ESTRUTURAS DE CONCRETO – CAPÍTULO 14

Libânio M. Pinheiro, Cassiane D. Muzardo

2004 out 06

ESTADOS LIMITES DE SERVIÇO

14.1 MOMENTO DE FISSURAÇÃO (M_r)

"Nos estados limites de serviço as estruturas trabalham parcialmente no estádio I e parcialmente no estádio II. A separação entre essas duas partes é definida pelo momento de fissuração. Esse momento pode ser calculado pela seguinte expressão aproximada" (item 17.3 da NBR 6118:2003):

$$\mathsf{M}_{\mathsf{r}} = \frac{\alpha \cdot \mathsf{f}_{\mathsf{ct}} \cdot \mathsf{I}_{\mathsf{c}}}{\mathsf{y}_{\mathsf{t}}}$$

 α é o fator que correlaciona aproximadamente a resistência à tração na flexão com a resistência à tração direta:

$$\alpha = \begin{cases} \text{1,2 para seções T ou duplo T} \\ \text{1,5 para seções retangulares} \end{cases}$$

A resistência do concreto à tração direta, f_{ct} , é obtida conforme o item 8.2.5 da NBR 6118:2003. Para determinação de M_r , no estado de limite de formação de fissura, deve ser usado o $f_{ctk,inf}$, e no estado limite de deformação excessiva, o f_{ctm} ;

$$f_{ct} = \begin{cases} f_{ctk,inf} = 0.21 f_{ck}^{2/3} & \text{(em MPa, formação de fissura)} \\ f_{ctm} = 0.3 f_{ck}^{2/3} & \text{(em MPa, deformação excessiva)} \end{cases}$$

I_c é o momento de inércia da seção bruta de concreto;

y_t é a distância do centro de gravidade da seção à fibra mais tracionada.

Para seção retangular, resulta:

$$I_{c} = \frac{b \cdot h^{3}}{12}$$
$$y_{t} = h - x = x$$

14.2 HOMOGENEIZAÇÃO DA SEÇÃO

Por ser formado por dois materiais – concreto e aço – com propriedades diferentes, é necessário homogeneizar a seção, para alguns cálculos. Essa homogeneização é feita substituindo-se a área de aço por uma área correspondente de concreto, obtida a partir da área de aço A_S , multiplicando-a por $\alpha_e = E_S/E_C$.

14.2.1 Estádio I

No estádio I o concreto resiste à tração. Para seção retangular, a posição da linha neutra e o momento de inércia são calculados com base na Figura 14.1.

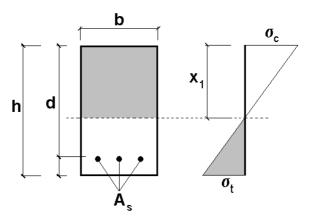


Figura 14.1 – Seção retangular no Estádio I

No cálculo da posição x_1 da linha neutra, basta fazer M_{LN} = 0, sendo M_{LN} o momento estático da seção em relação à linha neutra. Para a seção retangular da figura 14.1 tem-se:

$$M_{LN} = b \cdot x \cdot \frac{x}{2} - b \cdot (h - x) \cdot \frac{(h - x)}{2} - (\alpha_e - 1) \cdot A_s \cdot (d - x) = 0 \rightarrow x_1$$

$$\alpha_e = E_s/E_c$$

E_S = 210 GPa = 210 000 MPa (Item 8.3.5 da NBR 6118:2003)

$$E_C = 0.85 E_{Ci} = 0.85 . 5600 f_{ck}^{1/2} = 4760 f_{ck}^{1/2}$$
 (em MPa, item 8.2.8 da NBR 6118:2003)

A expressão para cálculo da posição x₁ da linha neutra resulta:

$$x_1 = \frac{b \cdot h^2}{2} + (\alpha_e - 1) \cdot A_s \cdot d$$

$$b \cdot h + (\alpha_e - 1) \cdot A_s$$

Para a mesma seção retangular da Figura 14.1, o momento de inércia resulta:

$$I_1 = \frac{b \cdot h^3}{12} + b \cdot h \cdot \left(x_1 - \frac{h}{2}\right)^2 + (\alpha_e - 1) \cdot A_s \cdot (d - x_1)^2$$

Para seção circular, tem-se:

$$I_{1,cir} = \frac{\pi \cdot \phi^4}{64}$$

No cálculo de I_1 , é desprezível o momento de inércia da armadura em relação ao próprio eixo.

14.2.2 Estádio II

No estádio II o concreto tracionado é desprezado, pois ele está fissurado (Figura 14.2).

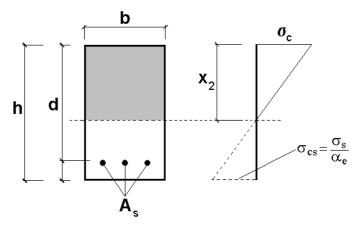


Figura 14.2 - Seção retangular no Estádio II

Com procedimento análogo ao do estádio I, desprezando-se a resistência do concreto à tração, tem-se para seção retangular no estádio II (Figura 14.2):

$$M_{LN} = b \cdot x \cdot \frac{x}{2} - \alpha_e \cdot A_s \cdot (d - x) = 0 \rightarrow x_2$$

Portanto, a posição da linha neutra x₂ é obtida por meio da equação:

$$\frac{b}{2} \cdot x_2^2 + \alpha_e \cdot A_s \cdot x_2 - \alpha_e \cdot A_s \cdot d = 0$$

Momento de inércia l₂:

$$I_2 = \frac{b \cdot x_2^3}{12} + b \cdot x_2 \cdot \left(\frac{x_2}{2}\right)^2 + \alpha_e \cdot A_s \cdot (d - x_2)^2$$

OΠ

$$I_2 = \frac{b \cdot x_2^3}{3} + \alpha_e \cdot A_s \cdot (d - x_2)^2$$

14.3 FORMAÇÃO DE FISSURAS

O estado limite de formação de fissuras corresponde ao momento de fissuração calculado com f_{ct} = $f_{ctk,inf}$. Esse valor de M_r é comparado com o momento fletor relativo à combinação rara de serviço, dada por (item 11.8.3.2 da NBR 6118:2003):

$$F_{d,ser} = \sum F_{gik} + F_{q1k} + \sum \psi_{1j} \cdot F_{qjk}$$

F_{d,ser} é o valor de cálculo das ações para combinações de serviço

F_{q1k} é o valor característico das ações variáveis principais diretas

 Ψ_1 é o fator de redução de combinação fregüente para ELS (Tabela 14.1)

Tabela 14.1 – Valores de ψ_0 , ψ_1 e ψ_2 (NBR 6118:2003)

	Υ _{f2}			
	Ψ0	Ψ1 ⁽¹⁾	Ψ2	
Cargas	Locais em que não há predominância de pesos de equipamentos que permanecem fixos por longos períodos de tempo, nem de elevadas concentrações de pessoas (2)		0,4	0,3
acidentais de edifícios	Locais em que há predominância de pesos de equipamentos que permanecem fixos por longos períodos de tempo, ou de elevada concentração de pessoas ⁽³⁾		0,6	0,4
	Bibliotecas, arquivos, oficinas e garagens	0,8	0,7	0,6
Vento	Pressão dinâmica do vento nas estruturas em geral	0,6	0,3	0
Temperatura	Variações uniformes de temperatura em relação à média anual local	0,6	0,5	0,3

⁽¹⁾ Para valores de ψ₁ relativos às pontes e principalmente aos problemas de fadiga, ver seção 23 da NBR 6118:2003

Para edifícios, em geral, em que a única ação variável é a carga de uso, tem-se:

$$\boldsymbol{F}_{d,ser} = \boldsymbol{F}_{gk} + \boldsymbol{F}_{qk} = \boldsymbol{F}_{k}$$

Portanto, $M_{d,rara} = M_r$.

Se $M_{d, \, rara} > M_r$, há fissuras; caso contrário, não.

14.4 DEFORMAÇÃO

Na verificação das deformações de uma estrutura, deve-se considerar: combinação quase-permanente de ações e rigidez efetiva das seções.

²⁾ Edifícios residenciais

³⁾ Edifícios comerciais e de escritórios

A combinação quase-permanente é dada por (item 11.8.3.2 da NBR 6118:2003):

$$F_{d,ser} = \sum F_{gik} + \sum \psi_{2j} \cdot F_{qjk}$$

 $\mathsf{F}_{\mathsf{d},\mathsf{ser}}$ é o $\,$ valor de cálculo das ações para combinações de serviço

F_{qik} é o valor característico das ações variáveis principais diretas

 Ψ_2 é o fator de redução de combinações quase permanente para ELS (Tabela 14.1).

Para edifícios, em geral, em que a única ação variável é a carga de uso, tem-se (Tabela 14.1, ψ_2 = 0,3):

$$F_{d,ser} = F_{qk} + \psi_2 \cdot F_{qk}$$

14.4.1 Flecha imediata em vigas

A flecha imediata pode ser calculada admitindo-se comportamento elástico e pode ser obtida por meio de tabelas, em função das condições de apoio e do tipo de carregamento. PINHEIRO (1993) apresenta tabelas com expressões do tipo:

$$a_{i} = \begin{cases} \alpha \; \frac{p \; \ell^{4}}{E \, I} & \text{(p \'e uma carga linearmente distribu\'ida)} \\ \\ \beta \; \frac{P \; \ell^{3}}{E \, I} & \text{(P \'e uma carga concentrada)} \\ \\ \delta \; \frac{M \; \ell^{2}}{E \, I} & \text{(M \'e um momento aplicado)} \end{cases}$$

 α , β , δ são coeficientes tabelados e ℓ é o vão teórico.

Conforme a NBR 6118:2003, o módulo de elasticidade e o momento de inércia podem ser obtidos, respectivamente, conforme os itens 8.2.8 e 17.3.2.1.1:

$$E = E_{cs} = 0.85 \cdot E_{ci} = 0.85 \cdot 5600 \cdot f_{ck}^{1/2} = 4760 \cdot f_{ck}^{1/2}$$

$$I = I_{eq} = \left(\frac{M_r}{M_a}\right)^3 I_c + \left[1 - \left(\frac{M_r}{M_a}\right)^3\right] I_2$$

I_c é o momento de inércia da seção bruta de concreto;

 I_2 é o momento de inércia da no estádio II, calculado com $\alpha_e = E_s/E_c$;

Ma é o momento fletor na seção crítica, para combinação quase permanente;

M_r é o momento de fissuração calculado com f_{ct}=f_{ctm}.

O valor de M_r deve ser reduzido à metade, no caso de utilização de barras lisas.

14.4.2 Flecha diferida

A flecha adicional diferida, decorrente das cargas de longa duração em função da fluência, pode ser calculada de maneira aproximada pela multiplicação da flecha imediata pelo fator α_f dado pela expressão (NBR 6118:2003 – item 17.3.1.1.2):

$$\alpha_{\mathsf{f}} = \frac{\Delta \xi}{1 + 50 \cdot \rho'}$$

ρ' é a taxa de armadura de compressão (armadura dupla), dada por:

$$\rho' = \frac{A_s'}{b \cdot d}$$

$$\Delta \xi = \xi(t) - \xi(t_0)$$
 (Tabela 14.2)

t é o tempo, em meses, quando se deseja o valor da flecha diferida; t_0 é a idade, em meses, relativa à data de aplicação da carga de longa duração.

Obtém-se, portanto:

Flecha diferida: $a_f = \alpha_f$. a_i

Flecha total: $a_t = a_i + \alpha_f$. $a_i = a_i (1 + \alpha_f)$

Tabela 14.2 – Valores de ξ (Tabela 17.1 da NBR 6118:2003)

Tempo (t) meses	0	0,5	1	2	3	4	5	10	20	40	≥70
Coeficiente $\xi(t)$	0	0,54	0,68	0,84	0,95	1,04	1,12	1,36	1,64	1,89	2

14.4.3 Verificação das flechas

Os deslocamentos obtidos devem ser comparados com os valores limites dados na Tabela 14.3 e com os demais valores indicados na Tabela 13.2 da NBR 6118:2003.

Caso esses limites sejam ultrapassados, tem-se entre as soluções possíveis:

- Aumentar a idade para aplicação da carga (aumentar t₀), mantendo o escoramento por mais tempo ou retardando a execução de revestimentos, paredes etc.
- Adotar uma contraflecha (a_c), que pode ser estimada por meio da expressão (flecha imediata mais metade da flecha diferida):

$$a_c = a_i \cdot \left(1 + \frac{\alpha_f}{2}\right) = a_i + \frac{a_f}{2}$$

É usual arredondar o valor da contraflecha (a_c) para o múltiplo de 0,5 cm mais próximo do valor calculado. A contraflecha pode ser adotada mesmo quando os deslocamentos estiverem abaixo dos limites da Norma.

Tabela 14.3 – Limites para deslocamentos (Parte da Tabela 13.2 da NBR 6118:2003)

Tipo de efeito	Razão da limitação	Exemplo Deslocamento a considerar		Deslocamento limite	
Aceitabilidade sensorial	visual	Deslocamentos visíveis em elementos estruturais	Total	ℓ/250	
	outro	Vibrações sentidas no piso	Devidos a cargas acidentais	ℓ/350	
Efeitos estruturais em serviço	superfícies que devem drenar água	Coberturas e varandas	Total	∉250 ⁽¹⁾	
	Pavimentos que devem permanecer planos	Ginásios e pistas de	Total ℓ/350 + contra-flecha ⁽²		
		boliche	Ocorrido após a construção do piso	ℓ/600	
	Elementos que suportam equipamentos sensíveis	Laboratórios	Ocorrido após nivelamento do equipamento	De acordo com recomendação do fabricante do equipamento	

⁽¹⁾ As superfícies devem ser suficientemente inclinadas ou o deslocamento previsto compensado por contraflechas, de modo a não se ter acúmulo de água.
(2) Os deslocamentos podem ser parcialmente compensados pela especificação de contraflechas. Entretanto, a

14.5 ABERTURA DE FISSURAS

Na verificação de abertura de fissuras deve ser considerada combinação freqüente de ações. Para edifícios em geral, em que a carga de uso é a única ação variável, tem-se:

$$F_{d,ser} = F_{gk} + \psi_1 \cdot F_{qk}$$
 com $\psi_1 = 0.4$ (Tabela 14.1)

14.5.1 Valor da abertura de fissuras

A abertura de fissuras, w, determinada para cada região de envolvimento, é a menor entre w_1 e w_2 , dadas pelas expressões (item 17.3.3.2 da NBR 6118:2003):

⁽²⁾Os deslocamentos podem ser parcialmente compensados pela especificação de contraflechas. Entretanto, a atuação isolada da contraflecha não pode ocasionar um desvio do plano maior que *ℓ*/350.

$$w \le \begin{cases} w_1 = \frac{\phi_i}{12.5 \cdot \eta_i} \cdot \frac{\sigma_{si}}{E_{si}} \cdot \frac{3 \cdot \sigma_{si}}{f_{ctm}} \\ w_2 = \frac{\phi_i}{12.5 \cdot \eta_i} \cdot \frac{\sigma_{si}}{E_{si}} \cdot \left(\frac{4}{\rho_{ri}} + 45\right) \end{cases}$$

 σ_{si} , ϕ_i , E_{si} , ρ_{ri} são definidos para cada área de envolvimento em exame (Figura 14.3):

A_{cri} é a área da região de envolvimento protegida pela barra φ_i (Figura 14.3);

 E_{si} é o módulo de elasticidade do aço da barra considerada, de diâmetro ϕ_i ;

ρ_{ri} é a taxa de armadura em relação à área A_{cri}, dada por:

$$\rho_{ri} = \frac{A_{si}}{A_{cri}}$$

 σ_{si} é a tensão de tração no centro de gravidade da armadura considerada, calculada no Estádio II, cálculo este que pode ser feito com α_e =15 (item 17.3.3.2 da NBR 6118:2003).

 η_i é o coeficiente de conformação superficial da armadura considerada (η_1 para armadura passiva dado no item 9.3.2.1 da NBR 6118:2003)

$$\eta_1 = \begin{cases} 1{,}0 \text{ para barras lisas} \\ 1{,}4 \text{ para barras dentadas} \\ 2{,}25 \text{ para barras nervuradas} \end{cases}$$

$$f_{ctm} = 0.3 \cdot f_{ck}^{2/3}$$
 (em MPa, item 8.2.5 da NBR 6118:2003)

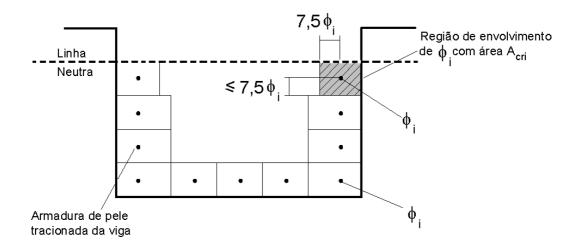


Figura 14.3 – Concreto de envolvimento da armadura (Figura 17.3 da NBR 6118:2003)

14.5.2 Cálculo de σ_{si}

Há duas maneiras de se calcular o valor de σ_{si} , indicadas a seguir.

a) Cálculo refinado

No Estádio II obtém-se x_2 e I_2 (item 14.2.2). Neste caso, a Norma permite adotar α_e =15.

$$\sigma_{cs} = \frac{\sigma_{s}}{\alpha_{e}} = \frac{M_{d,freq}}{I_{2}} \cdot (d - x_{2}) \Longrightarrow \sigma_{s} = \frac{\alpha_{e} \cdot M_{d,freq} \cdot (d - x_{2})}{I_{2}}$$

b) Cálculo aproximado

É feito adotando-se z = 0.80d (Figura 14.4):

$$\sigma_s = \frac{M_{d,freq}}{0.80 \cdot d \cdot A_s}$$

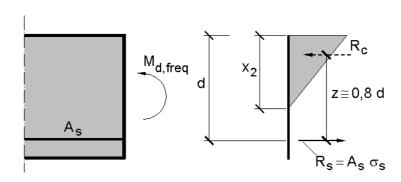


Figura 14.4 – Braço de alavanca

14.5.3 Valor limite

Em função da classe de agressividade ambiental, (Tabela 6.1 da NBR 6118:2003), a abertura máxima característica w_k das fissuras é dada na Tabela 14.4.

Tabela 14.4 – Exigências de durabilidade relacionadas à fissuração e à proteção da armadura (Parte de tabela 13.3 da NBR 6118:2003)

Tipo de concreto estrutural	Classe de agressividade ambiental (CAA)	Exigências relativas à fissuração	Combinação de ações em serviço a utilizar
Concreto simples	CAA I a CAA IV	Não há	***
Concreto armado	CAA I	ELS - W $w_k \le 0.4 \text{ mm}$	
	CAA II a CAA III	ELS - W $w_k \le 0.3 \text{ mm}$	Combinação frequente
	CAA IV	ELS - W $w_k \le 0.2 \text{ mm}$	

Caso o valor obtido para $w_k > w_{k,lim}$, as providências possíveis são:

- Diminuir o diâmetro da barra (diminui φ);
- Aumentar o número de barras mantendo o diâmetro (diminui σ_s);
- Aumentar a seção transversal da peça (diminui φ).

14.6 EXEMPLO

Verificar os ELS para a viga biapoiada indicada na Figura 14.5. Dados: seção 22cm x 40cm, ℓ = 410cm, concreto C25, aço CA-50, armadura longitudinal 4ϕ 20 (12,60 cm²), d = 35,9cm, classe II de Agressividade Ambiental.

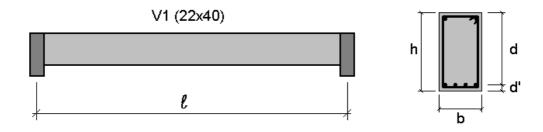


Figura 14.5 – Viga biapoiada

14.6.1 Momento de fissuração

$$M_{r} = \frac{\alpha \cdot f_{ct} \cdot I_{c}}{y_{t}}$$

 α = 1,5 (seção retangular)

$$I_c = \frac{b \cdot h^3}{12} = \frac{22 \cdot 40^3}{12} = 117333 \, \text{cm}^4$$

$$y_t = h - x = \frac{h}{2} = \frac{40}{2} = 20 \text{ cm}$$

a) Formação de fissura

$$f_{ct} = f_{ctk,inf} = 0.21 \cdot f_{ck}^{2/3} = 0.21 \cdot 25^{2/3} = 1.795 \,\text{MPa} = 0.1795 \,\text{kN/cm}^2$$

$$M_r = \frac{1.5 \cdot 0.1795 \cdot 117333}{20} = 1580 \,\text{kN.cm} = 15.8 \,\text{kN.m}$$

$$M_{d,rara} = \frac{p \cdot \ell^2}{8} = \frac{50 \cdot 4,10^2}{8} = 105,1 \text{kN.m}$$
 $M_{d,rara} = 105,1 \text{kN.m} > M_{r} = 15,8 \text{kN.m} \rightarrow \text{há fissuras}$

b) Deformação excessiva

$$f_{ct} = f_{ctm} = 0.3 \cdot f_{ck}^{2/3} = 0.3 \cdot 25^{2/3} = 2.565 \,\text{MPa} = 0.2565 \,\text{kN/cm}^2$$

$$M_r = \frac{1.5 \cdot 0.2565 \cdot 117333}{20} = 2257 \,\text{kN.cm} \cong 22.6 \,\text{kN.m}$$

14.6.2 Momento de inércia no estádio II

$$\begin{split} &\frac{b}{2} \cdot x_2^2 + \alpha_e \cdot A_s \cdot x_2 - \alpha_e \cdot A_s. d = 0 \\ &E_s = 210000 \text{ MPa} \\ &E_c = 4760 \cdot f_{ck}^{1/2} = 4760 \cdot 25^{1/2} = 23800 \text{ MPa} \\ &\alpha_e = \frac{E_s}{E_c} = \frac{210000}{23800} = 8,82 \\ &\frac{22}{2} \cdot x_2^2 + 8,82 \cdot 12,60 \cdot x_2 - 8,82 \cdot 12,60.35,9 = 0 \\ &x_2^2 + 10,10 \cdot x_2 - 362,69 = 0 \\ &x_2 = 14,66 \text{ cm} \quad (\text{A raíz negativa \'e ignorada}) \\ &I_2 = \frac{b \cdot x_2^3}{3} + \alpha_e \cdot A_s \cdot (d - x_2)^2 \\ &I_2 = \frac{22 \cdot 14,66^3}{3} + 8,82 \cdot 12,60 \cdot (35,9 - 14,66)^2 \Rightarrow I_2 = 73.240 \text{ cm}^4 \end{split}$$

14.6.3 Deformação excessiva

a) Combinação quase-permanente

$$p_{qp} = g + \psi_2 \cdot q = 40 + 0.3 \cdot 10 = 43 \, kN / m = \frac{43}{100} \, kN / cm$$

b) Momento de inércia equivalente

É obtido com a expressão indicada no item 14.4.1:

$$I = I_{eq} = \left(\frac{M_r}{M_a}\right)^3 \cdot I_c + \left[1 - \left(\frac{M_r}{M_a}\right)^3\right] \cdot I_2$$

São conhecidos os valores (item 14.6.1 e 14.6.2)

 $M_r = 22,6 \text{ kN.m}$ (EL - Deformação) (Item 14.6.1b)

 $M_a = M_{d, rara} = 105,1kN.m$ (Item 14.6.1a)

 $I_c = 117333 \text{ cm}^4 \text{ (Item 14.6.1)}$

 $I_2 = 67380 \, \text{cm}^4 \text{ (Item 14.6.2)}$

Resulta:

$$I = I_{eq} = \left(\frac{22.6}{105.1}\right)^{3} \cdot 117333 + \left[1 - \left(\frac{22.6}{105.1}\right)^{3}\right] \cdot 73240 = 73679 \text{ cm}^{4}$$

c) Flecha imediata

A flecha imediata é obtida com a expressão (Tabela 3.2a, caso 6, PINHEIRO, 1993):

$$a_{i} = \frac{5}{384} \cdot \frac{p \cdot \ell^{4}}{E \cdot I}$$

O módulo de elasticidade do concreto foi calculado no item 14.6.2:

$$E = E_{cs} = 4760 \cdot f_{ck}^{1/2} = 4760 \cdot 25^{1/2} = 23.800 \,\text{MPa} = 2.380 \,\text{kN/cm}^2$$

Substituindo os valores já obtidos, resulta:

$$a_i = \frac{5}{384} \cdot \frac{43}{100} \cdot \frac{410^4}{2380 \cdot 73679} \Longrightarrow a_i = 0,902 \, \text{cm}$$

d) Flecha diferida

$$\alpha_f = \frac{\Delta \xi}{1 + 50 \cdot \rho'} \text{ (Item 14.4.2)}$$

 $\rho' = 0$ (Armadura simples)

$$\alpha_f = \frac{1,32}{1} = 1,32$$

$$a_f = \alpha_f \cdot a_i = 1,32 \cdot 0,902 \rightarrow a_f = 1,191 \text{cm}$$

e) Flecha total

$$a_t = a_i \cdot (1 + \alpha_f) = 0.902 \cdot (1 + 1.32) \Longrightarrow a_t = 2.09 \text{ cm}$$

f) Flecha limite

Da Tabela 14.3, para aceitabilidade visual:

$$a_{lim} = \frac{\ell}{250} = \frac{410}{250} = 1,64 \text{ cm}$$

Há necessidade de contraflecha, pois:

$$a_t = 2,09 \, \text{cm} > a_{lim} = 1,64 \, \text{cm}$$

g) Contraflecha

$$a_c = a_i \cdot \left(1 + \frac{\alpha_f}{2}\right) = a_i + \frac{a_f}{2} = 0,902 + \frac{1,191}{2} = 1,49 \text{ cm}$$
 (Item 14.5.3)

Adota-se contraflecha de 1,5cm.

14.6.4 Abertura de fissuras

a) Dados iniciais

 ϕ = 20 mm

 η = 2,25 (Barras nervuradas, CA-50)

 $E_s = 210\ 000\ MPa = 21\ 000\ kN/cm^2\ (Item\ 8.2.5\ da\ NBR\ 6118:2003)$

b) Taxa de armadura ρ_{ri}

Com base na Figura 14.3, há duas regiões de envolvimento a considerar (Figura 14.6): das barras externas, $A_{\text{cri,es}}$, e das barras internas, $A_{\text{cri,int}}$. O espaçamento horizontal e_h das barras longitudinais é dado por:

$$e_h = \frac{b - (2c + 2\phi_t + 4\phi_\ell)}{3}$$
 (Há três espaços entre as barras)

Para b=22cm, c=2,5cm, ϕ_t =0,63cm e ϕ_ℓ = 2cm, resulta:

$$e_h = \frac{22 - (2 \cdot 2.5 + 2 \cdot 0.63 + 4 \cdot 2.0)}{3} = 2.58 \text{ cm}$$

As respectivas áreas de envolvimento resultam:

Acri, est =
$$(c + \phi_t + \phi_\ell + \frac{e_h}{2}) \cdot (c + \phi_t + 8\phi_\ell) =$$

= $(2.5 + 0.63 + 2.0 + \frac{2.58}{2}) \cdot (2.5 + 0.63 + 8 \cdot 2.0) = 122.81 \text{cm}^2$

 $\text{Acri, int} = (\phi_{\ell} + e_{h}) \cdot (c + \phi_{t} + 8\phi_{\ell}) = (2.0 + 2.58) \cdot (2.5 + 0.63 + 8 \cdot 2.0) = 87.62 \, \text{cm}^{2}$

Adota-se o menor desses dois valores, resultando:

Acri =
$$87,62 \text{ cm}^2$$

$$\rho_{ri} = \frac{A_{si}}{A_{cri}} = \frac{2,0}{87,62} = 0,0228 = 2,28\%$$

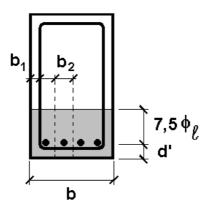


Figura 14.6 – Área A_{cr}

c) Momento fletor para combinação frequente

$$\begin{split} &M_{d,freq} = M_{gk} + \psi_1 \cdot M_{qk} \qquad \psi_1 = 0,4 \text{ (Tabela 14.1)} \\ &M_{gk} = \frac{40 \cdot 4,10^2}{8} = 84,1 \text{kN.m} \\ &M_{qk} = \frac{10 \cdot 4,10^2}{8} = 21,0 \text{ kN.m} \\ &M_{d,freq} = 84,1 + 0,4 \cdot 21,0 = 92,5 \text{ kN.m} \end{split}$$

d) Cálculo aproximado de σ_s

$$\sigma_s = \frac{M_{d,freq}}{0.80 \cdot d \cdot A_s} = \frac{9250}{0.80 \cdot 35.9 \cdot 12.60} = 25.56 \,\text{kN/cm}^2$$

e) Cálculo de σ_s no estádio II com α_e = E_s / E_c = 8,82

$$\sigma_s = \frac{\alpha_e \cdot M_{d,freq} \cdot (d - x_2)}{I_2} = \frac{8,82 \cdot 9250 \cdot (35,9 - 14,66)}{73240} = 23,66 \, kN/cm^2$$

f) Cálculo de σ_s no estádio II com α_e = 15

Linha neutra

$$\begin{split} &\frac{b}{2} \cdot x_2^2 + \alpha_e \cdot A_s \cdot x_2 - \alpha_e \cdot A_s . d = 0 \\ &\frac{22}{2} \cdot x_2^2 + 15 \cdot 12,\!60 \cdot x_2 - 15 \cdot 12,\!60.35,\!9 = 0 \\ &x_2^2 + 17,\!18 \cdot x_2 - 616,\!82 = 0 \\ &x_2 = 17,\!69 \,\text{cm} \quad \text{(A raíz negativa é ignorada)} \end{split}$$

• Momento de inércia

$$\begin{split} I_2 &= \frac{b \cdot x_2^3}{3} + \alpha_e \cdot A_s \cdot (d - x_2)^2 \\ I_2 &= \frac{22 \cdot 17,69^3}{3} + 15 \cdot 12,60 \cdot (35,9 - 17,69)^2 \Rightarrow I_2 = 103269 \, \text{cm}^4 \end{split}$$

• Valor de σ_s para α_e = 15

$$\sigma_s = \frac{\alpha_e \cdot M_{d,freq} \cdot (d - x_2)}{I_2} = \frac{15 \cdot 9250 \cdot (35.9 - 17.69)}{103269} = 24.47 \, kN/cm^2$$

Nota-se que este valor de σ_s é muito próximo dos obtidos nos itens anteriores.

g) Cálculo de w_k

$$w_{k} \leq \begin{cases} w_{1} = \frac{\phi_{i}}{12.5 \cdot \eta_{i}} \cdot \frac{\sigma_{si}}{E_{si}} \cdot \frac{3 \cdot \sigma_{si}}{f_{ctm}} \\ w_{2} = \frac{\phi_{i}}{12.5 \cdot \eta_{i}} \cdot \frac{\sigma_{si}}{E_{si}} \cdot \left(\frac{4}{\rho_{ri}} + 45\right) \end{cases}$$

$$w_{_1} = \frac{20}{12,5 \cdot 2,25} \cdot \frac{25,56}{21000} \cdot \frac{3 \cdot 25,56}{0,2565} = 0,26 \, mm$$

$$w_2 = \frac{20}{12,5 \cdot 2,25} \cdot \frac{25,56}{21000} \cdot \left(\frac{4}{0,0228} + 45\right) = 0,19 \, \text{mm}$$

Obtém-se, portanto:

$$w_k = 0.19 \, \text{mm} < w_{lim} = 0.4 \, \text{mm}$$
 (Item 14.5.3)

AGRADECIMENTOS

Aos colaboradores na redação, nos desenhos e na revisão deste texto:

Marcos Vinícius Natal Moreira,

Anastácio Cantisani de Carvalho (UFAM) e

Sandro Pinheiro Santos.

REFERÊNCIA

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2003). NBR 6118 — Projeto de estruturas de concreto. Rio de Janeiro, ABNT.