SILOS VERTICAIS DE MADEIRA COMPENSADA

JOAQUIM VAZ

Dissertação apresentada à Escola de Engenharia de São Carlos, da Universidade de São Paulo, como parte dos requisitos para a obtenção do título de Mestre em Engenharia de Estruturas.

SÃO CARLOS, setembro 1987
SILOS VERTICAIS DE MADEIRA COMPENSADA

JOAQUIM VAZ

ORIENTADOR - PROF. DR. CARLITO CALIL JÚNIOR
“Eles ergueram a Torre de Babel
Para encontrar o céu;
Mas Deus não estava lá,
Estava ali mesmo entre eles,
Ajudando a construir a Torre”

Mário Quintana

Por que sempre estiveram conosco nesta construção, nossos agradecimentos

a meus pais,

Suely e Daniel.

a minha mulher,

Marta.
AGRADECIMENTOS

Somos gratos a todas as pessoas que infundiram energia e valor ao nosso trabalho.

Prof. Dr. Carlito Calil Júnior, por sua orientação segura e confiante.

Prof. Dr. João Cesar Hellmeister, chefe do Laboratório de Madeiras e de Estruturas de Madeira - LaMEM, em cuja experiência assentamos os suportes desta realização.

Prof. Dr. Francisco Antonio Rocco Lahr, pelo estímulo e colaboração.

Prof. João Carlos Barreiro, por todo seu envolvimento fundamental para a realização desta pesquisa.

Eng. Maria Angela Vaz dos Santos, minha irmã, pela sua participação na análise teórica deste estudo.

À amiga Neuza T. Celere, bibliotecária da EESC, pela valiosa colaboração na parte bibliográfica deste trabalho.

Funcionários, colegas, amigos do LaMEM o reconhecimento especial pelo auxílio nos trabalhos de pesquisa, desenhos e datilografia.

À Fundação Universidade do Rio Grande e à CAPES - Programa - PICD, pelo apoio financeiro.
RESUMO

Buscou-se neste trabalho realizar um estudo teórico e experimental de silos verticais aéreos à nível de fazendas, com seção transversal hexagonal, construídos em chapas de madeira compensada e peças de madeira maciça da espécie Peroba Rosa interligadas através de parafusos auto-atarrazantes.

Procedeu-se à determinação experimental das características elásticas das chapas de madeira compensada, bem como, das características de resistência destas chapas e das ligações com parafusos auto-atarrazantes, necessárias ao estudo.

Visando a abordar todos os aspectos característicos e peculiares destes silos hexagonais, desenvolveu-se o projeto de uma de suas formas mais completas, o silo dotado de fundo tremonhado.

Ensaios realizados num modelo construído, em escala natural, da tremonha do silo, a parte mais complexa da estrutura, mostraram resultados experimentais bastante coerentes com os teóricos, calculados a partir de um esquema estrutural, especialmente desenvolvido para silos poligonais, onde, as chapas compensadas, consideradas como material plano e ortrotópico, ficaram submetidas, simultaneamente, a esforços de flexão (ação de placa) e de tração (ação de chapa).

A pesquisa mostrou a viabilidade técnica e construtiva dos silos hexagonais de compensado como uma alterantiva para armazenamento à nível de fazendas.
ABSTRACT

The aim of this work is the theoretical and experimental study of hexagonal vertical farm silos built with plywood plates and Peroba Rosa wood beams connected with lag screws.

The elastic and strength characteristics of plywood and strength characteristics of lag screws were determined for this study.

In order to give a complete design of the hexagonal vertical silo, a pyramidal hopper was used in the silo base.

An experiment was made with a pyramidal hopper in structural size, that is, the most important part of the structure, and the results showed a good agreement with theoretical values calculated from a structural procedure, mainly developed to polygonal silos, where the plywood plates, considered as a plane and orthotropic material have been submitted to both bending stress (slab action) and tension (plate action).

The research showed a technical and construction viability of the hexagonal vertical plywood silos with an alternative to farm storage.
SUMÁRIO

1. INTRODUÇÃO ................................................. 1

2. CARREGAMENTOS NOS SILOS .................................. 5
   2.1. Carregamentos Devido ao Peso Próprio ............... 5
   2.2. Carregamentos Devido ao Material Ensilado .......... 6
      2.2.1. Breve exame à respeito das pesquisas e e teorias sobre pressões nos silos .......... 7
      2.2.2. Normas existentes para a determinação das pressões nos silos ...................... 32
      2.2.3. Norma alemã-DIN 1055 (1986) ................. 36
   2.3. Carregamentos Devido à Ação do Vento ............. 47

3. CHAPAS DE MADEIRA COMPENSADA ......................... 49
   3.1. Generalidades ........................................ 49
   3.2. Madeira Compensada ................................... 50
   3.3. Parâmetros Elásticos e de Resistência da Madeira Compensada ............................... 54
   3.4. Metodologia de Ensaio ............................... 58
      3.4.1. Ensaio de tração ................................ 58
      3.4.2. Ensaio de compressão ........................... 59
      3.4.3. Ensaio de flexão ................................ 60
      3.4.4. Ensaio de torção ................................ 61

4. PARAFUSOS AUTO-ATARRAXANTES ......................... 63
   4.1. Ligação com Parafusos Auto-Atarraxantes .......... 63
   4.2. NEWLIN e GAHAGAN (1938) ............................ 64
      4.2.1. Resistência ao arrancamento direto ............. 65
      4.2.2. Resistência ao deslocamento lateral .......... 66
   4.3. NATIONAL FOREST PRODUCTS ASSOCIATION-NFPA (1977) 69
      4.3.1. Resistência ao arrancamento direto ............. 70
      4.3.2. Resistência ao deslocamento lateral .......... 70
   4.4. ABNT-NBR 7190 (1982) - Cálculo e Execução de Estruturas de Madeiras ................... 71

5. ENSAIOS REALIZADOS ....................................... 72
5.1. Caracterização da Madeira Compensada .................. 72
5.1.1. Ensaios de tração .................................. 72
5.1.2. Ensaios de compressão ............................... 79
5.1.3. Ensaios de flexão ................................... 84
5.1.4. Ensaios de torção ................................... 88
5.1.5. Análise dos resultados ............................... 93
  5.1.5.1. Comparaçã o entre os módulos de elasticidade à
  tração, à compressão e à flexão ......................... 93
  5.1.5.2. Relação constitutiva entre tensões e
  deformações para o compensado ....................... 95
  5.1.5.3. Valores de resistência e de projeto do
  compensado ............................................. 97
5.2. Ligação para fusadas entre Peças de Madeira Com-
  pensada e Peças de Madeira Maciça ....................... 99
  5.2.1. Ligação característica ............................. 99
  5.2.2. Parafuso auto-atarraxante ......................... 100
    5.2.2.1. Dimensões do parafuso ......................... 100
    5.2.2.2. Ensai o de tração nos parafusos ................. 101
  5.2.3. Ensai os de ligações com parafusos auto-
  atarraxantes 1/4"X60mm ............................. 103
    5.2.3.1. Materiais .................................. 103
    5.2.3.2. Ensai os de resistência ao arran-
  camento direto .................................. 104
    5.2.3.3. Ensai os de resistência ao deslo-
  camento lateral .................................. 109

6. PROJETO DE UM SILO HEXAGONAL DE MADEIRA COMPENSADA COM
  FUNDO TREMONHADO ..................................... 118
6.1. Generalidades .......................................... 118
6.2. Análise Construtiva e Estrutural do Silo ............. 121
  6.2.1. Corpo do silo .................................... 122
    6.2.1.1. Pressão horizontal – $P_h$ .................. 124
    6.2.1.2. Carga tangencial – $Q_t$ .................... 133
  6.2.2. Tremonha do silo .................................. 136
    6.2.2.1. Carga normal – $q_n$ ..................... 138
    6.2.2.2. Carga tangencial–$q_t$ ................. 146
    6.2.2.3. Sustentação da tremonha .................. 148
6.2.3. Cobertura do silo .................. 152
6.2.4. Fundações do silo .................. 153
6.3. Cálculos e Verificações dos Elementos do Silo 153
6.3.1. Verificação a ação do peso próprio e do material ensilado .................. 153
6.3.1.1. Verificação dos elementos e ligações do corpo do silo ... 163
6.3.1.2. Verificação dos elementos e ligações da tremonha do silo. 186
6.3.1.3. Verificação dos elementos e ligações da cobertura do silo 208
6.3.2. Verificação à ação do vento ............ 210
6.3.2.1. Verificação do tombamento do conjunto .................. 210
6.3.2.2. Verificação dos pilares externos do silo e suas ligações com a fundação ........... 211
6.3.2.3. Verificação dos pilares internos do silo e suas emendas .. 215
6.3.2.4. Verificação das terças da cobertura do silo e suas ligações aos pilares internos ... 218
6.4. Desenhos do silo .......................... 219

7. CONSTRUÇÃO E EXPERIMENTAÇÃO DE UMA TREMONHA PIRÂMIDAL DE MADEIRA COMPENSADA .......................... 230

7.1. Generalidades ........................... 230
7.2. Construção do Modelo .................... 231
7.3. Experimentação do Modelo .................. 234
7.4. Resultados e Discussões ................... 245

8. COMPARAÇÃO DOS RESULTADOS EXPERIMENTAIS COM OS VA-LORES TEÓRICOS .......................... 258

8.1. Deformações nas Chapas de Compensado ...... 259
8.2. Deformações nos Elementos de Ligação das Chapas Compensadas do Modelo .................. 267
8.3. Deslocamentos nas Chapas Compensadas ...... 270
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4. Deslocamentos nos Elementos de Ligação das Chapas Compensadas do Modelo</td>
<td>272</td>
</tr>
<tr>
<td>8.5. Deslocamentos na Viga de Sustentação da Trema nha do Modelo</td>
<td>274</td>
</tr>
<tr>
<td>9. COMENTÁRIOS FINAIS E CONCLUSÕES</td>
<td>278</td>
</tr>
<tr>
<td>REFERÊNCIAS BIBLIOGRÁFICAS</td>
<td>285</td>
</tr>
<tr>
<td>BIBLIOGRAFIA</td>
<td>293</td>
</tr>
<tr>
<td>ANEXO 1</td>
<td>298</td>
</tr>
<tr>
<td>ANEXO 2</td>
<td>305</td>
</tr>
<tr>
<td>ANEXO 3</td>
<td>323</td>
</tr>
<tr>
<td>ANEXO 4</td>
<td>330</td>
</tr>
</tbody>
</table>
1- INTRODUÇÃO

O processo produtivo agrícola compreende duas funções distintas, porém interdependentes: a produção e a comercialização, caracterizadas por diferentes segmentos sequenciais, iniciando com a intenção de produzir e concluindo com a distribuição do produto para o consumo final. O armazenamento posiciona-se entre estas funções, como elo indissociável do processo integrado. Não haver condicões adequadas de processamento e estocagem do produto colhido, invariavelmente ocorrerão anomalias no segmento da comercialização, que por sua vez, face à debilidade dos resultados apurados, provocarão desestímulos de produção, fechando uma cadeia viciosa, certamente, desastrosa para toda comunidade.

No Brasil, a produção de grãos provém, em sua maior parte, de pequenos agricultores que exploram a terra na qualidade de proprietários, parceiros, arrendatários e ocupantes ou possuídos. Produtos como feijão, milho, arroz e soja, básicos para a economia nacional, têm seu cultivo concentrado em extratos de áreas de menos de 100 hectares, representando mais de 85% dos estabelecimentos rurais do país com uma produção correspondente acerca de 65% do total brasileiro, estimado em 50 milhões de toneladas anuais.

Infelizmente, menos de 7% destes produtores beneficiam-se do armazenamento na própria fazenda, que, dentre outras vantagens, pode propiciar: a comercialização da colheita em épocas mais oportunas, evitando as pressões naturais do mercado nos períodos de safra; a eliminação ou redução das perdas quantitativas ou qualitativas, ocasionadas na própria lavoura por eventuais retardos da colheita e guarda dos produtos em locais inadequados; e poderosa economia nos preços de fretes e carretos, evitando a remoção do produto nos períodos de "pique-de-safra", quando os custos podem chegar a níveis exagerados.

Ademais, o apoio governamental a esta classe de produtores, através da sua rede de unidades armazenadoras subterminais, não tem sido suficiente e muito menos adequado. Assim, inexistindo a infra-estrutura básica necessária (energia elétrica, armazenagem, crédito rural, preços mínimos e assistência técnica), o pequeno agricultor vem, sistematicamente, comercializando sua produção com lucros compensadores aos intermediários e prejuízo final.
para toda a coletividade. Prejuízo este, não só pelo avultamento dos preços, como também, pelo abandono inevitável das atividades agrícolas por parte destes trabalhadores e o conseqüente êxodo rural.

Nestas condições, dentre outros, o desenvolvimento de projetos de silos de pequena capacidade, práticos, econômicos e seguros, que possam, isoladamente ou agrupados sob a forma de unidas- des coletoras, satisfazerem as necessidades dos pequenos agricultores, torna-se fundamental, consintuindo-se, hoje, em condição preliminar e indispensável ao aumento da produção agrícola nacional.

Os silos construídos com chapas de madeira compensada, apresentam-se como alternativa, salientando-se entre as vantagens a facilidade de trabalhar com a madeira e a grande disponibilidade no comércio deste produto industrializado; como desvantagem, destaca-se o alto custo, decorrente do elevado preço, atual, destas chapas. Estudos como os de GLASSE (1941), FENTON (1942), NEUBAUER (1943), LONG (1947), TICKLE (1953), APA (1973) e de CALIL JR. (1978) mostram a viabilidade da utilização deste produto na construção de silos.

Aborda o presente trabalho um estudo teórico e experimental de silos verticais aéreos, com seção transversal hexagonal, construídos com chapas de madeira compensada e peças de madeira maciça da espécie Peroba Rosa, interligadas através de parafusos auto-atarraxantes.

A adoção da forma poligonal está ligada à finalidade principal de aproveitar uma das dimensões da chapa de compensado, ou um seu múltiplo, como lado da seção transversal dos silos. Estudos preliminares definiram, a forma hexagonal como uma das melhores opções, visto propiciar razoável capacidade para o armazenamento em fazendas, com lados relativamente pequenos, gerando menores esforços nos elementos estruturais dos silos.

Com o objetivo de analisar este tipo de estrutura em sua forma mais completa, o modelo teórico estudado, com capacidade de armazenamento em torno de 30 m³ de cereal, foi dotado de um fundo removível e uma cobertura em duas águas. A fundação do silo, embora analisada, não foi objetivo do estudo.

No projeto, em vista de todas as indefinições iniciais, optou-se, dentro de um esquema construtivo pré-concebido, fixar
as dimensões para os elementos do silo e, a seguir, verificado-las aos carregamentos atuantes (peso próprio, ação do material ensilado e ação do vento) em função de um esquema estrutural especial -mente desenvolvido, visando ao aproveitamento mais racional possível dos materiais de construção utilizados.


As características elásticas e de resistência das chapas de madeira compensada, necessárias aos cálculos, foram obtidas experimentalmente, seguindo a metodologia recomendada por RIBEIRO (1986), onde estas chapas são consideradas como materiais planos e ortotrópicos.

Foram determinados o módulo de elasticidade longitudinal e a resistência característica dos compensados à tração, à compressão e à flexão, tanto na direção paralela como na direção perpendiculares às suas fibras de face, bem como, o módulo de elasticidade transversal e os coeficientes de Poisson.

Os compensados em sua ação de placa, devido sua ortotropia, foram resolvidos por elementos finitos com auxílio do programa de análise estrutural (SAP-4), BATHE et al. (1974). Em sua ação de chapa, visto o pequeno valor dos coeficientes de Poisson, admi tiu-se as tensões e deformações independentes em cada direção.

O programa SAP-4 (A structural analysis program for static and dynamic response of linear systems) foi utilizado sob a orientação da Eng. Maria Angela Vaz dos Santos, que na oportunidade, usava o mesmo no desenvolvimento de seu trabalho de mestrado junto ao Departamento de Engenharia Mecânica da EESC-USP, (SAN TOS, 1987).

A ligação com parafusos auto-atarrazantes, utilizada entre as chapas de madeira compensada e as peças de Peroba Rosa, foi estudada seguindo a metodologia de NEWLIN e GAHAGAN (1938).

Os valores de resistência ao arrancamento direto e ao deslocamento lateral destas ligações foram estabelecidos experi -
mentalmente, originando valores de cálculo, em função das recomendações da ABNT-NBR 7190 (1982); valores estes, que foram comparados a aqueles obtidos por NEWLIN e GAHAGAN (1938) e aos recomendados pela NFPA (1977) para espécies de madeiras americanas.

Com o objetivo de avaliar o silo de formato hexagonal, tanto sob o aspecto de dificuldades construtivas como de seu real comportamento quando sob carregamentos, construiu-se um modelo em escala natural de sua tremonha, a parte mais complexa da estrutura, ensaiada dentro do Laboratório de Madeira e de Estruturas de Madeira – LAEM, da Escola de Engenharia de São Carlos – USP, aproveitando-se de toda sua infraestrutura para realização de ensaios.

As ações estáticas e dinâmicas, máximas, sobre as paredes da tremonha, devido aos movimentos de carga e descarga do material ensilado, foram simuladas, nos ensaios, através de cargas estáticas, controladas e aplicadas por um sistema hidráulico mecânico.

As deformações e deslocamentos dos elementos do modelo, registrados durante os ensaios por extensômetros elásticos e transdutores de deslocamentos, respectivamente, foram analisados e comparados aos calculados teoricamente, considerando-se todas as hipóteses, teorias e dados utilizados.

A armazenagem de grãos a granel exige uma sequência de operações, podendo-se destacar a manipulação nos processos de carga e descarga e na aeração, que, embora analisadas, não se constituíram em objetivo desta pesquisa.

Segundo o projeto do Engenheiro Agrícola Daniel Marçal de Queiróz, pesquisador do Centro Nacional de Treinamento e Armazenagem – CENTREINAR, elaborado especificamente para o silo vertical, objeto deste trabalho, com capacidade para armazenamento de 30 m³ de cereais e relação altura/lado aproximada de 1:3,75, o sistema de aeração necessita de um ventilador com potência de 0,04 CV, para propiciar um fluxo de ar, recomendado, de 0,1 m³/min.tf, admitindo uma eficiência do sistema de 50%.

A distribuição do ar poderá ser feita de qualquer forma na base do silo, podendo ser usada a própria boca de descarga do produto ou uma calha, colocada ao longo da tremonha.

Vários equipamentos e procedimentos indispensáveis à manipulação dos grãos encontram-se em CALIL JR. (1978).
2- CARREGAMENTOS NOS SILOS

Os silos podem ser projetados e construídos com qualquer forma ou tamanho, ajustando-se aos diversos requisitos ou processos para os quais são planejados; entretanto, sempre a primeira condição para o desenvolvimento do projeto estrutural é o perfeito conhecimento das forças que atuam sobre a estrutura.

Os critérios de projeto para silos são similares aos de outras estruturas, todavia, são necessários cuidados especiais, devido à influência das condições funcionais e geométricas e ao fato de que a estrutura, frequentemente, é carregada para 100% da carga do projeto.

Os carregamentos a serem considerados nos cálculos, normalmente, são:

- peso próprio;
- cargas de equipamentos (estruturas de transportadores ou alimentadores);
- material armazenado (durante o enchimento, o repouso e o esvaziamento);
- cargas dinâmicas (terremotos, vibrações...);
- sedimentos das fundações;
- efeitos térmicos (temperatura do ar, temperatura do material armazenado).

A combinação destas ações deve ser feita com muito cuidado, visto serem, normalmente, incertas suas determinações.

Neste estudo de silos com chapas de compensado, em consequência de não haver previsão de instalações de equipamentos e ocorrência de terremotos ou vibrações de qualquer natureza que vêm nham solicitar a estrutura, são consideradas apenas as ações do peso próprio do silo, do material ensilado e do vento.

As ações decorrentes de recalques de apoio e efeitos térmicos foram desconsideradas em consequência da estrutura ser em madeira e comportar-se no sentido de absorvê-las, através de acomodações de corpo rígido.

O silo foi dimensionado para as ações do peso próprio e do material ensilado e verificado à ação do vento.

2.1- Carregamentos Devido ao Peso Próprio

As cargas devido ao peso próprio são muito pequenas, se
comparadas às aquelas decorrentes do material ensilado, mesmo assim, foram consideradas, uniformemente distribuídas pela superfície ou comprimento dos elementos do silo.

2.2- Carregamentos Devido ao Material Ensilado

A ação do material armazenado sobre as paredes verticais de um silo pode ser reduzida a três solicitações fundamentais:
- pressão horizontal ($p_h$) → perpendicular às paredes verticais do corpo do silo;
- pressão vertical ($p_v$) → perpendicular à seção transversal do silo;
- pressão de atrito ($p_w$) → tangencial às paredes do silo, provocando-lhes compressão.

![Diagrama de pressões nas paredes e tremonha do silo](attachment:diagram.png)

Fig. 2.1. Pressões nas paredes e tremonha do silo, devido ao material ensilado
As pressões $P_n$ e $P_t$, respectivamente, cargas normal e tangencial às paredes inclinadas da tremonha, mostradas na figura 2.1, são obtidas a partir dos valores das pressões $P_i$ e $P_y$ para a base do corpo do silo.

A distribuição do atrito contra as paredes é uma decorrência da pressão horizontal, $P_w = P_h \cdot \mu$, onde $\mu$ é o coeficiente de atrito entre o material armazenado e as paredes do silo. Assim, o conhecimento da ação do material ensilado sobre os paramentos do silo, resume-se à determinação das pressões vertical e horizontal.

Esta determinação, como já mencionado, depende dos aspectos geométricos e funcionais do silo. Mostra-se muito simples para a condição estática do material armazenado, mas, complica-se bastante com o rompimento deste equilíbrio estático de caráter elástico, devido ao movimento da massa, decorrente da abertura da boca de saída do silo. Os regimes de escoamento do material armazenado se estabelecem por equilíbrios dinâmico-elastoplásticos, caracterizados por importantes incrementos nas pressões laterais.

Os projetistas de silos têm dependido, em grande parte, das teorias desenvolvidas, no fim do século XIX notadamente por JANSSEN (1895) ou mais recentemente por REIMBERT (1943), e dos resultados experimentais de ensaios realizados desde então, tanto em silos reais como em modelos. Estas teorias e resultados estão sumarizadas no Estado da Arte, apresentado por RAVENET (1977-1978) para materiais granulares e, mais tarde, complementado por CALIL JR. (1984) para materiais pulverulentos.

2.2.1 - Breve exame à respeito das pesquisas e teorias sobre pressões nos silos

Os primeiros silos de grande altura para armazenar grãos foram construídos por volta de 1870. Desconhecia-se o comportamento dos produtos granulares armazenados e as paredes foram projetadas como se estes se comportassem como líquidos, desenvolvendo pressões hidrostáticas.

ROBERTS (1882-1884), na Inglaterra, realizou experimentos em modelos e em silos de tamanho natural, mostrando que as pressões nas paredes não aumentam linearmente com a altura e que parte do peso do material armazenado é transferido para as paredes por atrito. Como resultado, as pressões na parede e no fundo da parte inferior do silo são menores do que seriam com líquido. Simultaneamente,
a presença do atrito junto às paredes provoca-lhes esforços de compressão inexistentes na consideração hidrostática.

O engenheiro alemão JANSSEN (1895), definiu matematicamente os valores experimentais obtidos por ROBERTS (1884). deduzindo uma equação para a determinação teórica das pressões verticais, até hoje utilizada, para a condição estática de carregamento dos silos. Seu estudo se fundamentou no equilíbrio estático de uma porção elementar de material, conforme a figura 2.2.

Fig. 2.2. Equilíbrio estático de Janssen

Pelo equilíbrio da porção elementar de material, têm-se:

\[ p_v \cdot A + \gamma \cdot A \cdot dz = (p_v + \frac{dp_v}{dz} \cdot dz) A + \mu \cdot p_h \cdot u \cdot dz \]

ou,

\[ \gamma \cdot A \cdot dz - A \cdot \frac{dp_v}{dz} \cdot dz - \mu \cdot p_h \cdot u \cdot dz = 0 \]
ou ainda,

\[ \gamma = \frac{d\rho_V}{dz} \quad \mu \frac{\lambda}{\Gamma_H} \rho_V = 0 \]

A integração desta equação diferencial de primeira ordem fornece a expressão para a pressão vertical em qualquer altura do silo:

\[ \rho_V = \frac{\gamma \cdot \Gamma_H}{\lambda \cdot \mu} (1 - e^{-2(\mu/\Gamma_H)}) \]

onde, \( \gamma \) é o peso específico do material ensilado; \( \mu \) o coeficiente de atrito entre o material e as paredes do silo; \( \Gamma_H \) o raio hidráulico médio da seção transversal do silo (\( \Gamma_H = A/\mu \)); e \( \lambda \) a relação entre as pressões horizontais e vertical.

Dentre as características importantes desta expressão, pode-se destacar que os valores de \( \gamma, \mu \) e \( \lambda \) foram assumidos constantes e que a pressão vertical tem comportamento exponencial assintótico.

**JANSSEN** (1895) não definiu teoricamente o valor da relação \( \lambda \), mas mediou-o indiretamente da pressão no fundo de modelos de silos cilíndricos altos. Por assumir que a pressão vertical, \( \rho_V \), atingia o valor assintótico, pode determinar \( \lambda \) da expressão:

\[ \lambda = \frac{(\gamma \cdot \Gamma_H)}{(\rho_B \cdot \mu)} \]

onde \( \rho_B \), é a pressão vertical no fundo dos modelos, obtida experimentalmente.

Um ano após, **KOENEN** (1896) sugeriu que este valor de \( \lambda \) fosse admitido igual ao coeficiente de pressão ativa de Rankine, possibilitando a determinação teórica das pressões horizontais, semelhante ao que é feito em Mecânica dos Solos:

\[ \lambda = \frac{(1 - \text{sen}\phi)}{(1 + \text{sen}\phi)} = \tan^2(\pi/4 - \phi/2) \]

onde \( \phi \) é ângulo de atrito interno do material, definido igual ao seu ângulo de repouso.

Ainda em 1896, surgem os primeiros relatos de ocorrência de sobressens laterais, no descarregamento de silos cilíndricos,
ensaiados em Bernburg (Alemanha). PRANT (1896), devido aos apara-
tos de medição utilizados, não quantificou o fenômeno, mas estimu-
lou outros pesquisadores a fazê-lo.

AIRY (1897), na Inglaterra, usando uma teoria de cunha
de deslizamento, semelhante à utilizada em Mecânica dos Solos, pa-
ra projetos de muros de arrimo, propôs um método alternativo para
o cálculo da carga lateral nos silos. Uma cunha de material granu-
lar foi assumida deslizar ao longo de um plano, mobilizando atrito
intergranular ao longo do plano de cisalhamento e, também, atrito
entre a parede do silo e o material (figura 2.3).

![Diagrama de deslizamento](image)

- $G_{mat}$ → peso da cunha de deslizamento
- $q_h$ → carga horizontal por unidade de perímetro
- $\mu_i = \tan\phi$; $\mu_w = \mu = \tan\phi_w$
- $\theta$ → plano de ruptura

**Fig. 2.3. Cunha de deslizamento de AIRY**

Das equações de equilíbrio estático, AIRY (1897) defi-
niu o plano de ruptura, obtendo a carga lateral por unidade de pe-
rímetro para qualquer altura. Classificou os silos em altos ou
baixos, respectivamente, se o plano de ruptura intercepta com a parede lateral do silo ou com a superfície livre do topo do material armazenado.

- silos baixos -

\[ q_h = \frac{\gamma h^2}{2 \tan \theta} \left( \frac{\tan \theta - \mu_i}{1 - \mu_i \mu_w + (\mu_i + \mu_w) \tan \theta} \right) \]

\[ \tan \theta = \mu_i + \left( \frac{1 + \mu_i^2}{\mu_i + \mu_w} \right)^{1/2} \]

- silos altos -

\[ q_h = \frac{\gamma b}{2} (2h - b \cdot \tan \theta) \left( \frac{\tan \theta - \mu_i}{1 - \mu_i \mu_w + (\mu_i + \mu_w) \tan \theta} \right) \]

\[ \tan \theta = \left( \frac{2h}{b} \right) \left( \frac{1 - \mu_i^2}{\mu_i + \mu_w} + \frac{1}{\mu_i + \mu_w} \left( \frac{1 - \mu_i \mu_w}{\mu_i + \mu_w} \right)^{1/2} - \frac{1 - \mu_i^2}{\mu_i + \mu_w} \right) \]

onde, \( h \) é a altura do corpo do silo; \( b \) é a largura do silo; \( \mu_i \) é o coeficiente de atrito interno do material armazenado (\( \mu_i = \tan \theta \)), \( \mu_w \) é o coeficiente de atrito entre o material e a parede do silo (\( \mu_w = \mu = \tan \phi_w \)), e \( \theta \) é o ângulo entre o plano de cisalhamento do material e a horizontal.

Esta teoria não requer a definição da relação \( \lambda \), entre as pressões horizontal e vertical. Os valores de \( \phi \), \( \phi_w \) e \( \gamma \) foram determinados experimentalmente para os diversos materiais armazenados em silos de madeira, aço e concreto armado.

KETCHUM (1909), ao descrever os resultados dos experimentos realizados por vários engenheiros desde 1882 até 1909, expôs o consenso dos pesquisadores até então: em silos com descarga
centrada, as pressões laterais registradas durante ensaios com os grãos em movimento mostram-se levemente superiores às registradas com os grãos em repouso, com uma variação máxima em relação a condição estática de provavelmente 10%. Entretanto, no caso de descarga excêntrica, os valores registrados se mostram muito altos, da ordem de quatro vezes a pressão lateral com os grãos em repouso.

Com a equação de Janssen sendo recomendada e grandemente empregada pelos projetistas de todo o mundo e a de Airy, especialmente, pelos ingleses, os problemas de projetos de silos pareciam ter sido resolvidos, até a década de 1930, quando refinamentos nos materiais de construção e métodos de projetos estruturais levaram à redução dos fatores de segurança. Um grande número de in vestigações estruturais impulsionaram novas investigações sobre os carregamentos que materiais armazenados exercem sobre a estrutura que os contêm.

A observação inicial de PRANT (1896), que as pressões nos silos altos não são constantes, como afirmado por JANSSEN (1895) e AIRY (1897), mas variam grandemente entre a condição de carregamento e a condição de descarregamento, gradativamente foi se confirmando experimentalmente.

Takhtamishev (apud TURITZIN, 1963), em 1938 e 1939, na Rússia, registrou sobrepresões laterais, duas a três vezes maiores que as obtidas pela teoria de Janssen. Em 1941, ensaios realizados com modelos de concreto, obteve pressões laterais para areia e trigo em movimento, maiores que para os mesmos materiais em repouso, respectivamente, 1,65 e 1,35 vezes.

Da observação do movimento das massas granulares em modelos e em silos de tamanho natural, Takhtamishev (apud TURITZIN, 1963) notou dois tipos principais de fluxo. No primeiro tipo, atualmente definido como fluxo de funil, uma coluna central de fluxo é formada sobre a boca de saída, dentro da massa de grãos que permanece em repouso. Uma cunha de material escoante se estende para o topo do silo e forma um funil, dentro do qual, os grãos escoam ordenadamente. O segundo tipo, atualmente definido como fluxo de massa, é caracterizado pelo movimento simultâneo de toda a massa de material armazenado, através da abertura de descarga do silo (figura 2.4).
a) Fluxo de funil  

b) Fluxo de massa

Fig. 2.4. Tipos de fluxo na descarga de materiais granulares de silos altos

Takhtamishev (apud TURITZIN, 1963) verificou que comente o fluxo de massa, ocorrido em reservatórios de paredes lisas, foi responsável por maiores pressões laterais.

Isto, parcialmente, explica a inconsistência dos resultados relatados por FRANT (1896) e KETCHUM (1909). Desconhecedores do movimento dos produtos granulares no interior dos silos, os pesquisadores até então, dificilmente poderiam conduzir seus experimentos de forma a medirem as pressões desejadas.

Na França, REIMBERT (1943) baseado em extensivos testes realizados em modelos, apresentou uma teoria para silos altos, tendo como principal diferença, em relação a Janssen, uma distribuição hiperbólica para as pressões laterais.

Admitiu o peso do material equilibrado por atrito junto às paredes do silo com uma distribuição hiperbólica, obtida, ao longo da altura deste, pela diferença entre o peso total do material armazenado e a carga vertical flutuante sobre sua seção transversal (figura 2.5). A partir desta condição, deduziu a expressão para a pressão lateral em qualquer altura do silo. A correspondente
pressão vertical foi obtida por simples equilíbrio estático.

\[
(P_v)_{\text{max}} = \frac{P_0 + \gamma A h_0}{3} + \gamma A dz + \frac{dP_v}{dz} A
\]

\[
(P_v)^* = (P_v)_{\text{max}} - A
\]

\[
(P_v)_{\text{max}} = \gamma A \frac{\Gamma H}{\mu \lambda} + \text{conforme JANSSEN (1895)}
\]

** C = abscissa característica

\[
C = \left[ \frac{(P_v)_{\text{max}} - P_0}{\gamma A} \right] + \left( \frac{\Gamma H}{\mu \lambda} \right) - \frac{h_0}{3}
\]

Fig. 2.5. Distribuição hiperbólica das pressões no silo, segundo Reimbert
A curva III, de acordo com REIMBERT (1943) pode ser representada, com suficiente aproximação, por uma hipérbole:

\[ y = \frac{az^2 + bz + c}{dz + e} = \gamma \cdot A \cdot Z + P_0 - P_v \]

Após algumas transformações, obteve:

\[ y = \gamma \cdot A \cdot Z^2/(Z + C) \]

onde, \( y \) representa a força total de atrito, junto às paredes do silo.

A equação para a pressão lateral foi estabelecida por igualar-se a diferencial da expressão anterior à força de atrito, em um anel de parede do silo com altura \( dz \):

\[ \frac{dy}{dz} \cdot dz = \mu \cdot p_h \cdot dz \]

ou,

\[ p_h = \frac{\gamma \cdot \Gamma_H (Z^3 + 2CZ)}{(Z + C)^2} \]

ou ainda,

\[ P_h = (P_{h\text{max}})^{(1 - (\frac{Z}{C} + 1))^{-2}} \]

onde, \((P_{h\text{max}})\) é \(\gamma \cdot \Gamma_H / \mu\), conforme Janssen; e \( C \) é a abcissa característica, \( C = (\Gamma_H / \mu \lambda) - h_0 / 3 \).

A pressão vertical foi determinada pelo equilíbrio estático das forças verticais:

\[ P_v = \gamma \cdot A \cdot Z + \gamma \cdot A \cdot \frac{h_0}{3} - y \]

ou,

\[ P_v = \gamma (Z + h_0/3) - \gamma Z^2/(Z + C) \]
ou ainda,

\[ p_v = \gamma \left[ Z \left( \frac{Z}{C} + 1 \right)^{-1} + \frac{h_0}{3} \right] \]

onde, \( \gamma \) é o peso específico do material armazenado; \( C \) é a abscissa característica, \( C = (\gamma H/\mu \lambda) - h_0/3 \); e \( h_0 \) é a altura do cone superior de material ensilado.

Ainda que tenha concluído de seus ensaios, que a relação \( \lambda = (1 - \text{sên} \phi)/(1 + \text{sên} \phi) \), entre as pressões horizontal e vertical, varia com a altura de material granular armazenado e com a forma do silo, REIMBERT (1943) admitiu em suas expressões, constantes os valores de \( \gamma \phi \) e \( \phi_w \). O ângulo \( \phi \), foi adotado igual ao menor valor do ângulo interno do material, ou seja, igual ao ângulo de repouso.

Esta teoria, mostra-se mais conservadora que a de Janssen para as pressões laterais na parte superior do silo, entretanto, a pressão vertical no fundo do silo é menor, quando calculada pela expressão de Reimbert.

Em seus ensaios, REIMBERT (1943) constatou a ocorrência de pressões laterais nos silos com fluxo de massa maiores que as detectadas com o material em repouso e, também, observou grandes picos de carga no fundo de silos com fluxo de funil, devido à caída de abóbadas formadas no interior da massa escoante pela interrupção do fluxo. Os registros dos ensaios com o material em movimento foram muito irregulares e os fenômenos puderam ser estudados apenas qualitativamente.

Os irmãos REIMBERT e REIMBERT (1971) relatam a ocorrência de sobrepresões variáveis de 1,76 a 2,39 vezes às respectivas pressões de repouso, para trigo carregado e descarregado com diferentes velocidades em silos de concreto armado de tamanho natural, ensaiados em 1953, em Paris.

Chamam a atenção para os cuidados necessários ao aumento das pressões, durante o escoamento em silos com fluxo de massa, recomendando no projeto, ou a adoção de coeficientes dinâmicos de majoração das pressões estáticas ou a utilização de tubos antidinâmicos que evitem este tipo de fluxo (figura 2.6).
a) silo carregado  
b) material em fluxo

Fig. 2.6. Tubo antidinâmico dos Reimbert

Quando o silo está cheio, a pressão nas paredes é função do raio hidráulico da seção do silo, portanto, maior que a pressão dentro do tubo, cujo raio hidráulico é bem menor.

Ao ser aberta a boca de saída do silo, os grãos que se encontram no interior da coluna antidinâmica entram em movimento, enquanto que o restante da massa permanece em repouso.

À medida que o nível do tubo antidinâmico vai baixando, o material em repouso na parte superior do silo vai entrando no tubo pelos orifícios, estabelecendo um escoamento ordenado e sem sobrepresões.

O tipo de escoamento estabelecido com a utilização destes tubos, em que o primeiro material a entrar no silo é o último a sair, pode não ser conveniente no armazenamento de produtos perigosos. Outro problema é a inevitável tendência à segregação dos materiais de granulometria variável.
Kolt (apud JENIKE e JOHANSON, 1968), em 1899, sugeriu
que o campo de pressões que se desenvolve, durante o carregamento
dos silos, é do tipo ativo, enquanto que o campo de pressões que
se desenvolve, durante o escoamento do material, é do tipo passi-
vo, seguindo a teoria de Rankine. Logo, para o descarregamento, a
relação entre as pressões passivas é: $\lambda_{\text{passivo}} = (1 + \text{sen}\phi) / (1 - \text{sen}\phi)$,
isto é, o inverso da relação entre as pressões ativas.

Este conceito foi incorporado às teorias de cálculo de
pressões desenvolvidas por Caquot e Kérisel em 1949, Ohde em 1950
e Nanninga em 1956 (apud JENIKE e JOHANSON, 1968).

Nanninga, explicitamente, mostrou que para ocorrer o
equilíbrio da massa, grandes pressões se desenvolvem nas paredes
do silo, no plano de transição do estado ativo para o estado passi-
vo de pressões. Com a continuação do escoamento do material, este
plano vai subindo, gerando uma onda de sobrepresões, atingindo a
transição entre o canal de fluxo e as paredes verticais do silo.
Este fenômeno é melhor explicado, na seqüência, em JENIKE e JOHANSON
(1968).

A disparidade dos resultados obtidos, decorrentes, prin-
cipalmente, da falta de uma metodologia adequada para determinar as
propriedades, tanto do material armazenado como de sua interação
com as paredes do silo, fizeram com que nenhuma destas teorias ti-
vesse ampla aceitação. Em contrapartida as sobrepresões devido
ao movimento do material armazenado continuaram a ser detectadas
experimentalmente, sendo correntemente referidas por um coeficien-
te, denominado coeficiente de sobrepresão, que expressa sua rela-
ção com o respectivo valor estático.

Assim, firmava-se, cada vez mais, o procedimento de pro-
jetar as estruturas a partir das pressões estáticas, corresponden-
tes à condição de carregamento do silo (calculadas pelas expressões
de Janesssen, Airy ou Reimbert), devidamente corrigidas, em cada ca-
so específico, por estes coeficientes de natureza dinâmica.

BERGAU E KALLENENUS (1959), na Suécia, ensaiando silos
de concreto e aço, encontraram coeficientes de sobrepresão da or-
dem de dois. Este mesmo valor foi definido por ZAKREWSKI (1959)
na África do Sul, neste mesmo ano, ensaiando modelos com paredes
de cristal.

Paralelamente, ainda em 1959, os engenheiros soviéti-
cos, Kovtum e Platonov (apud TURITZIN, 1963), ensaiando modelos de
concreto, mostraram o maior coeficiente de sobrepressão detectado, até então, em silos reais, 2,32.

TURITZIN (1963) procedeu a uma revisão nos resultados experimentais e analíticos de pressões obtidas no escoamento de materiais armazenados, em silos com descarga centrada. Sua principal conclusão foi que nenhum dos vários métodos propostos, para determinar a distribuição das pressões dinâmicas, representa o que realmente ocorre.

De 1968 a 1973, nos U.S.A., A.W. Jenike, J.R. Johanson e J.W. Carson, especialistas em fluxo de massas sólidas, publicaram uma sequência de recomendações sobre carregamentos nos silos, que juntamente com as várias revisões publicadas, no final da década passada e início da atual, expressam importantes procedimentos para o cálculo das pressões nestas estruturas, decorrentes do material ensilado.

Seus vários métodos de cálculo reconhecem a importância que o modelo de fluxo tem, na predição das pressões nos silos. São feitas recomendações específicas, para a determinação dos carregamentos em silos com fluxo de massa e em silos com fluxo de funil.

Advertem, entretanto, que tanto a determinação do tipo de fluxo, como dos correspondentes carregamentos, só é possível com o perfeito conhecimento das propriedades físicas e de fluxo do material armazenado e de sua interação com as paredes do silo.


No início da primeira publicação sobre pressões nos silos, JENIKE e JOHANSON (1968) apresentam uma revisão na teoria de fluxo das massas sólidas, novamente baseados em seus estudos anteriores nesta área, JENIKE e SHIELD (1959), JENIKE (1962-1964), JOHANSON e COLIJN (1964), JOHANSON (1965) e JOHANSON e KLEYSTEUBER (1966). Salientam serem as pressões, que atuam no plano 'principal' de uma massa sólida armazenada, dadas por:

```
\[
\frac{p_1}{p_2} \leq 1 + \frac{\text{sen} \phi}{\text{sen} \phi} + \frac{2 \sigma}{p_2} \left( -\frac{\cos \phi}{\text{sen} \phi} \right)
\]

onde, \( p_1 \) e \( p_2 \) são, respectivamente, a maior e a menor pressão principal; \( \sigma \) é a coesão da massa; e \( \phi \) é o ângulo de atrito interno do sólido. A desigualdade representa um estado elástico de pressão, enquanto que a igualdade representa um estado limite, isto é, uma função de escoamento da massa (Yield function). Para os sólidos coesivos (\( \sigma > 0 \)), a coesão varia com o grau de consolidação do material.

Medidas de valores das pressões principais durante o fluxo, obtidas em diversos ensaios, indicam que a relação \( \frac{p_1}{p_2} \) é, praticamente, constante, para uma grande variação dos valores das pressões. Segundo JENIKE e JOHANSON (1968) esta relação pode ser, convenientemente, expressa por:

\[
\frac{p_1}{p_2} = \frac{1 + \text{sen} \delta}{1 - \text{sen} \delta}
\]

onde, \( \delta \) é chamado de "ângulo efetivo de atrito interno do material", tendo sido primeiramente definido por JENIKE e SHIELD (1959). Esta função é conhecida por função efetiva de escoamento da massa (effective yield function) e representa importante propriedade de fluxo do sólido.

A figura 2.7 mostra, através do círculo de Mohr, a relação entre as pressões principais que atuam numa massa sólida armazenada.

---

**Fig. 2.7.** Relação entre as pressões na massa sólida armazenada
Durante o fluxo, as equações anteriores devem ser simultaneamente satisfeitas e a coesão da massa mostra uma função da maior pressão principal $D_1$:

$$C = D_1 \left( \frac{\text{sen} \delta - \text{sen} \phi}{1 + \text{sen} \delta \cos \phi} \right)$$

Como, durante o fluxo, mudanças na coesão equivalem a mudanças na densidade da massa, se a pressão aumenta, a densidade aumenta e se a pressão diminui, a densidade diminui.

Para sólidos não coesivos, $C=0$, tem-se $\delta=\phi$. As variações nas pressões, praticamente, não afetam a densidade da massa, assim, os estados limites de pressões que se estabelecem podem ser admitidos como aqueles de Rankine.

Esta teoria, desenvolvida por JENIKE e SHIELD (1959), tem sido vista como uma generalização do critério de Rankine para o escoamento de massas sólidas armazenadas.

JENIKE e JOHANSON (1968) explicam a diferença entre as cargas nas paredes do silo, durante o estágio de carregamento inicial e durante o estágio de fluxo do material, como uma decorrência das diferentes deformações a que estes materiais ficam submetidos nestes estágios.

Ainda, na primeira publicação sobre pressões nos silos, em 1968, estabelecem as equações diferenciais para a determinação destes carregamentos, revisadas em JENIKE e JOHANSON (1969). As grandes pressões laterais, desenvolvidas durante a descarga do sólido, comumente denominadas de sobrepresões dinâmicas, foram atribuídas à mudança do estado ativo para o estado passivo de pressões, tal como o exposto por Nanninga em 1956 (apud JENIKE e JOHANSON, 1968) e ilustrado na figura 2.8, para silos com fluxo de massa.
a) Carregamento inicial       b) Carregamento na mudança

\[ P_n \] pressão normal às paredes do silo (KN/m²)

\[ P_w \] pressão de atrito nas paredes do silo (KN/m²)

\[ P_n \] sobrepresão normal às paredes do silo, distribuída ao longo do perímetro (KN/m)

\[ P_w \] sobrepresão de atrito nas paredes do silo, distribuída ao longo do perímetro (KN/m)

Fig. 2.8. Carregamentos típicos em silos com fluxo de massa
Durante o estágio inicial, quando o carregamento é feito com a boca de descarga do silo fechada, o sólido sofre contrações sob o peso crescente da massa depositada e o impacto devido à caía das partículas. Este tipo de deformação implica no desenvolvimento de um campo de pressões ativas por todo o silo. As linhas de pressões máximas formam picos verticais no centro do canal de fluxo (figura 2.8-a).

No corpo do silo, o sólido se contrai na vertical, sem deformações horizontais, ocorrendo um estado de pressões plásticas-ativas. Na parte cônica (tremonha, nos silos com fluxo de massa ou canal de fluxo, formado no interior do sólido, nos silos de fluxo de funil), o sólido, além de se contrair na vertical, contrai-se também na horizontal. Como resultado, não atinge um estado limite de pressões, apenas um estado de pressões elásticas-ativas.

Nos silos com previsão de fluxo de massa, a provável pressão são $P_n$, que atua nas paredes, é distribuída como mostra a figura 2.8-a, segue a equação de Janssen na parte do corpo do silo e uma distribuição linear na tremonha.

Como a massa se contrai, desliza nas paredes, gerando pressões de atrito $P_w$ ($P_w = P_n \cdot \mu$). O equilíbrio estático requer que o peso total do sólido dentro do silo seja suportado pelas paredes, isto é, a soma dos componentes verticais de $P_n$ e $P_w$ deve ser igual ao peso do sólido. A área sob a curva de pressões na figura 2.8-a representa este peso total do material armazenado.

Esta distribuição de pressões supõe que o sólido seja carregado sem impactos e apresente características de fluxo tais que não ocorram obstruções no escoamento, caso contrário, arcos estáveis podem se formar no interior do sólido. Quando um arco se rompe, uma grande massa de sólido cai e impõe cargas dinâmicas no silo.

Quando a boca de descarga do silo é aberta, o sólido começa a escoar, ocorrendo uma expansão vertical do mesmo dentro do canal de fluxo. Como, em geral, este canal diverge para cima, a massa escoante, além de expandir verticalmente, contrai lateralmente. Isto implica num campo de pressões passivas, com linhas de pressões máximas em forma de arcos horizontais, ou seja, um estado de pressões plásticas-passivas, dentro do canal de fluxo do sólido (figura 2.8-b).
A mudança do estado ativo (linhas de pressões em forma de picos verticais), para o estado passivo (linhas de pressões em forma de arcos horizontais), surgida na boca de saída do silo, desloca-se para cima, dentro do canal de fluxo, com a continuidade do escoamento da massa sólida.

Para os sucessivos níveis desta mudança, o equilíbrio do sólido impõe bruscas sobrepressões nas paredes do canal de fluxo. Gera-se uma onda de sobrepressões nestas paredes que se desloca com a mudança, até o nível de interseção com o corpo do silo, isto é, nível de transição nos silos, com fluxo de massa (encontro da tremonha com o corpo do silo), ou, ainda, nível da efetiva transição nos silos, com fluxo de funil (encontro do canal de fluxo, formado dentro do sólido, com o corpo do silo).

Na parte vertical do silo, o sólido escoa sem contrações laterais, logo, inexistem motivos de mudança, para o estado de pressões passivas continuar além do ponto de transição do silo ou de efetiva transição do silo.

Em relação aos silos com fluxo de massa, a figura 2.8-b mostra a provável distribuição das pressões, na parte da tremonha, no instante em que a mudança está na altura Z. Acima deste nível, o sólido ainda se encontra no estado ativo, prevalecendo as pressões do carregamento inicial. Abaixo, o sólido já se apresenta no estado passivo e as pressões de fluxo são, significativamente, menores que as pressões ativas anteriores.

Como já mencionado, o equilíbrio da massa sólida requer que a soma dos componentes das pressões $p_n$ e $p_w$ sobre as paredes do silo, seja, durante todo o tempo, igual ao peso do sólido no silo.

A área sob a curva de pressões representa este peso total, que, praticamente não mudou em relação à condição inicial; no entanto, esta área é agora deficiente pela porção hachurada (figura 2.8-b). O equilíbrio é estabelecido pelo surgimento, no plano da mudança, de uma pressão normal concentrada $p_n$, ao longo do perímetro do silo, conhecida como sobrepressão dinâmica.

Em decorrência desta pressão normal, surge também uma pressão de atrito $p_w$ ($p_w = p_n \cdot \nu$), que juntas, compensam a deficiência das pressões distribuídas.

O valor de $p_n$ é equivalente à área hachurada sob a curva de pressões da figura 2.8-b. Portanto, se as curvas de pressões para o carregamento inicial e carregamento de fluxo forem
conhecidas, a determinação das pressões concentradas $P_n$ e $P_w$, para qualquer altura da tremonha, é imediata, possibilitando a envoltória de pressões de projeto.

Esta sobrecarga, decorrente da mudança de estados, é particularmente significante nas tremonhas de silos altos, armazenando sólidos pesados e grossos, tais como rochas. Dependendo do tamanho do silo, da compressibilidade do sólido e da velocidade de descarga, a ação desta sobrecarga pode durar uma fração de segundo ou muito tempo.

Na continuação do escoamento, o material no interior do silo atinge um estado de fluxo uniforme, onde não mais ocorrem mudanças de estados. Normalmente, o movimento é bastante lento, propondo a desconsideração das forças inerciais. O peso do material volta a ser equilibrado simplesmente pelas pressões $P_n$ e $P_w$, distribuídas nas paredes do silo.

A figura 2.8-b mostra a provável distribuição de pressões de fluxo em silos com fluxo de massa (linha tracejada).

Coerentemente, para manter o equilíbrio da massa sólida, a presente distribuição, se comparada à do carregamento inicial, apresenta valores maiores na parte do corpo do silo, compensando os pequenos valores do estado passivo de pressões presente na tremonha.

Nos silos com fluxo de funil, a mudança do estado ativo para o estado passivo de pressões, ocorre dentro do canal de fluxo, formado no interior da massa sólida e as sobrepessões dinâmicas são amortecidas pelo sólido, parado ao redor do canal de fluxo, não atingindo as paredes do silo.

Apresentando-se, porém, o silo suficientemente alto, o canal de fluxo poderá atingir as paredes verticais, ocorrendo a ação da sobrepessão dinâmica sobre as paredes, sem o amortecimento.

Como a posição desta efetiva transição não é perfeitamente definida, normalmente é necessário considerar no projeto, uma envoltória de pressões, entre as posições extremas previstas.

Além disto, como os limites do canal de fluxo não são definidos, partes da porção não escoante do sólido podem estar no estado plástico de pressões sem satisfazer as condições de velocidade para o fluxo constante. Estas partes, periodicamente rompem, levando a cargas de choque que se sobrepõem ao carregamento de fluxo.
JENIKE, JOHANSON e CARSON (1973 a,b,c) ampliaram suas teorias sobre as pressões nas paredes dos silos, com um estudo baseado na energia de deformação da massa sólida armazenada.

Considerando que a energia de deformação recuperável do sólido acumulado, abaixo do plano de mudança do estado ativo para o passivo, pode ser minimizada, obtiveram as equações para as pressões nas paredes do silo. Demonstraram que estas equações estabelecem uma condição limite superior às pressões, enquanto que a condição limite inferior pode ser representada pela equação de Janssen.

Buscando facilitar a solução de suas equações (1968/1973), JENIKE et al. (1973 b,c) elaboraram uma série de gráficos adimensionais que propiciam de forma imediata os valores das pressões. Na utilização destes gráficos, indicam o valor constante 0,4 para a relação de pressões $\lambda = P_R/P_V$, a todos os materiais.

Estes gráficos e demais recomendações, necessárias para a determinação da distribuição de pressões em silos com fluxo de massa, são obtidos em JENIKE at al. (1973 b) e para silos com fluxo funil em JENIKE et al. (1973 c).

RAVENET (1977), baseado nos resultados de inúmeros ensaios efetuados em modelos, em silos reais e numa extensa revisão nas teorias e resultados experimentais sobre pressões nos silos, conclui que para a determinação destas pressões é fundamental:

- conhecer a geometria da célula e sua relação altura/lado;
- determinar a densidade, o ângulo de atrito interno e o ângulo de atrito do material com as paredes do silo, bem como, suas variações com o tempo de armazenagem, umidade ...;
- prevenir a formação de abóbadas no armazenamento de produtos pulverulentos coesivos. A ruptura destas estruturas pode levar a coeficientes de sobrepressão da ordem de cinco;
- definir o tipo de saída a instalar. As saídas podem ser: centradas, excêntricas ou múltiplas.

Recomenda, para o cálculo das pressões, a utilização da fórmula de Janssen, corrigida pelos seguintes coeficientes de sobrepressão:

  $e_d = 1,65$

- Descarga centrada. Relação altura/lado igual a 1,5.
  $e_d = 1,30$
Descarga excêntrica. Relação altura/lado igual a 7
\( e_d = 1,71 \)

Descarga excêntrica. Relação altura/lado igual a 1,5
\( e_d = 1,67 \)

Em 1979, os irmãos Reimbert determinam as sobrepressões geradas em um silo pelo processo de descarga do material armazenado. Em um sumário, REIMBERT e REIMBERT (1980) fornecem tabelas para o coeficiente de sobrepressão devido à descarga, \( e_d \), e para o coeficiente de sobrepressão dinâmica, \( e_b \), devido à carga e à descarga simultâneas, tanto para silos com boca de saída central, como para silos com boca de saída em outras posições.

Estes coeficientes são baseados em resultados de ensaios com modelos, usando areia fina. Reconhecendo que o material armazenado influencia, decisivamente, nestes valores, fornecem uma tabela de coeficientes adicionais \( e_{a1} \) e \( e_{a2} \), para três outros materiais: trigo, alpiste e fermento. Recomendam que, para qualquer outro material, estes coeficientes adicionais devem ser determinados em laboratórios especializados. Infelizmente, nesta publicação, não é definida a metodologia para estas determinações.

A predição para as pressões dinâmicas, em qualquer nível de um silo, pode ser feita pela equação:

\[
(P_h)_{dinâmico} = P_h \cdot e_d \cdot e_{a1}
\]

para a descarga, ou

\[
(P_h)_{dinâmico} = P_h \cdot e_d \cdot e_b \cdot e_{a2}
\]

para carga e descarga simultâneas.

JENIKE (1980), mais uma vez publicou recomendações para a predição das cargas nas paredes dos silos, particularmente para silos de seção circular.

As principais diferenças, em relação às recomendações anteriores (1968/1973), dizem respeito às cargas nas paredes do cilindro, calculadas com base na equação de Janssen, admitindo-se:

- a relação entre pressões \( \lambda \), variável entre limites que maximizam as cargas. Recomenda, para silos com fluxo de massa, ser
o limite inferior igual a 0,25 e o limite superior igual a 0,60. Para silos com fluxo de funil \( \lambda \) é considerado constante e igual a 0,4.

- o coeficiente de atrito, entre o material armazenado e as paredes do silo, varia entre um valor máximo (estático) e um valor mínimo (cinemático). JENIKE (1980) recomenda determinar experimentalmente estes valores.

\[ u_e \rightarrow \text{coeficiente de atrito estático} \]

\[ u_c \rightarrow \text{coeficiente de atrito cinemático} \]

O menor valor do coeficiente de atrito, ou seja, o coeficiente de atrito cinemático \( u_c \) e o menor valor de \( \lambda \), proporcionam os maiores valores para a pressão vertical, na seção transversal do silo:

- silos com fluxo de massa

\[ P_v = \frac{\gamma \cdot D}{(u_c - 0,05)} \left[ 1 - e^{-(u_c - 0,05)Z/D} \right] \]

- silos com fluxo de funil

\[ P_v = \frac{\gamma \cdot D}{1,6 (u_c - 0,05)} \left[ 1 - e^{-1,6(u_c - 0,05)Z/D} \right] \]

onde, \( D \) é o diâmetro do silo e \( \gamma \) o peso específico do sólido, considerado constante.

O coeficiente de atrito cinemático \( u_c \) e o maior valor de \( \lambda \), proporcionam os maiores valores para a pressão lateral, nas paredes do silo:

- silos com fluxo de massa

\[ P_h = \frac{\gamma \cdot D}{4 (u_c - 0,05)} \left[ 1 - e^{-2,4(u_c - 0,05)Z/D} \right] \]
- silos com fluxo de funil

\[ P_h = \frac{\gamma \cdot D}{4} \left( 1 - e^{-1,6 \left( \mu_c - 0,05 \right) Z/D} \right) \]

A carga vertical nas paredes, decorrentes do atrito com o material, é obtida por subtrair o menor valor de \( P_v \) (usando \( \mu_e \) e \( \lambda = 0,60 \)) do peso total do material armazenado acima da seção transversal considerada:

- silos com fluxo da massa

\[ F_w = \frac{\gamma \cdot D \cdot Z}{4} - \frac{\gamma \cdot D^2}{9,6 \left( \mu_e + 0,05 \right)} \left[ 1 - e^{-2,4 \left( \mu_e + 0,05 \right) Z/D} \right] \]

- silos com fluxo de funil

\[ F_w = \frac{\gamma \cdot D \cdot Z}{4} - \frac{\gamma \cdot D^2}{6,4 \left( \mu_e + 0,05 \right)} \left[ 1 - e^{-1,6 \left( \mu_e + 0,05 \right) Z/D} \right] \]

Para predizer a sobrepressão verificada na transição entre a tremonha e o cilindro de silos com fluxo de massa, decorrente da mudança do estado ativo para o estado passivo de pressões, JENIKE (1980) adota um novo procedimento, definindo uma curva de pressões de fluxo, para a tremonha do silo:

\[ P_n = \gamma \cdot \lambda_t \left( \frac{h_t - Z_t}{n} \right) + \left( \frac{P_v}{\gamma} - \frac{h_t}{n} \right) \left( 1 - \frac{Z_t}{h_t} \right) n+1 \]

sendo

\[ \lambda_t = \frac{P_n}{P_v} = \left( \frac{2}{3} \right) \left( 1 + \frac{c \cdot \frac{\frac{\partial^c}{\partial x^c}}{\partial x^c}}{\gamma \cdot \beta} - \left[ 6 \left( \frac{\partial^c}{\partial x^c} \right) \right]^{-0} \right) \]

\[ n = 2 \lambda_t \left( 1 + \frac{\frac{\partial^c}{\partial x^c}}{\gamma \cdot \beta} \right) - 3 \]
O valor \((\gamma' / \gamma')\) é obtido de pesquisas anteriores, JENIKE (1964) e depende de \(\phi_{TW}', \Theta'\) e \(\delta\). Os termos \(\phi_{TW}'\) e \(\Theta'\) são definidos como o ângulo de atrito cinemático entre o material armazenado e as paredes da tremonha, obtido experimentalmente, e, o ângulo de inclinação das paredes da tremonha com a vertical, respectivamente.

Para prevenir reflexos desta sobrepressão na parte superior do silo, (observados experimentalmente), JENIKE (1980) recomenda distribuir na parte vertical um carregamento equivalente ao pico de pressão.

Assim, a parte superior do cilindro, para uma altura aproximadamente igual ao diâmetro do cilindro, recebe uma parcela refletida da carga. A área hachurada sob a curva do pico de pressão é calculada e distribuída sobre uma área de altura \(D/2\), conforme mostra a figura 2.9. Esta carga refletida é adicionada à pressão de fluxo.

---

**Fig. 2.9. Curva de pressões para o fluxo de massa**
Na parte inferior da tremonha, as pressões são menores e normalmente representadas pela equação de Janssen, para a condição de carregamento (usando $\mu_e$ e $\lambda = 0,25$).

Nos silos com fluxo de funil, pode ocorrer uma efetiva transição, se o canal central de fluxo encontrar as paredes do silo. A localização desta efetiva transição pode ser diferente, mesmo para um dado material, porquanto, depende de fatores como o tempo de armazenagem do material, umidade ...

Segundo HAAKER e SCOTT (1983), a menor posição para esta efetiva transição pode ser estabelecida, para materiais granulares, através da equação:

$$\theta' = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} \left( \frac{1 - \text{sen}\phi}{1 + \text{sen}\phi} \right)$$

onde, $\theta'$ é o ângulo de inclinação do canal de fluxo com a vertical e $\phi$ o ângulo de atrito interno do material.

A pressão no canal de fluxo aumenta para a efetiva transição, da mesma forma como aumenta para o fluxo de massa, as fórmulas são as mesmas. Entretanto, nas paredes do silo, ao invés do pico de pressões característico do fluxo de massa, temos, para a efetiva transição, uma pressão distribuída sobre uma largura de cilindro.

JENIKE (1980) recomenda que a área hachurada, sob a curva de pressões, calculada como se o fluxo fosse de massa, deve ser distribuída, no nível da efetiva transição, sobre uma altura de parede igual a $D/2$, conforme ilustra a figura 2.10. Esta sobrecarga distribuída é adicionada às pressões de fluxo, calculadas para a condição de fluxo de massa.

A carga refletida, agora com valor equivalente à metade do pico de sobresspressão, posiciona-se da mesma forma que no fluxo de massa.

HAAKER e SCOTT (1983) criticam estas recomendações para fluxo de funil, argumentando que elas não consideram que a efetiva transição pode ocorrer para outras posições, além da prevista. Recomendam o uso de uma envoltória de pressões, entre os níveis onde a efetiva transição possa ocorrer.
Fig. 2.10. Sobrepresas para a efetiva transição.

2.2.2 - Normas existentes para a determinação das pressões nos silos

O item anterior, embora focalizando apenas uma pequena parte das inúmeras publicações existentes, mostra a grande disparidade entre as diversas teorias e resultados experimentais sobre pressões nos silos.

O problema se agrava, ao ser constatado que os recentes avanços nesta área parecem mais reforçar do que resolver a situação. Observa-se que os esforços no sentido de desenvolver complexos e refinados métodos de cálculo, ao invés de contribuírem para aumentar a confiabilidade na predição das pressões nos silos, têm atuado em sentido contrário, devido à impossibilidade de generalizar os resultados obtidos. Ao mesmo tempo, o desenvolvimento técnico-metodológico dos ensaios tem proporcionado aos pesquisadores resultados surpreendentes, aumentando as incertezas.

Entretanto, em alguns pontos fundamentais para o encaminhamento do problema, parece já existir um consenso:
- as pressões no silo são diferentes, durante estágio de carregamento e durante o estágio de fluxo;
- a distribuição das pressões, durante o estágio de carregamento (carregamento estático), pode ser representada pela equação de Janssen;
- fundamentalmente, existem dois tipos de fluxo, durante o escoamento da massa sólida armazenada: fluxo de massa e fluxo de funil;
- as pressões no silo são diferentes, dependendo do tipo de fluxo do material;
- a determinação das características físicas e de fluxo do material armazenado e de sua interação com as paredes do silo, é fundamental na predição, tanto do tipo de fluxo, como da distribuição das pressões atuantes nas paredes do silo;
- as pressões laterais, durante o estágio de descarga do silo, críticas na elaboração de projetos, podem ser obtidas pela equação de Janssen, majoradas por coeficientes de sobrepressão.

As normas existentes para o cálculo de silos refletem esta situação, diferindo significativamente umas das outras, não cobrindo todas as áreas de informações necessárias para o projeto destas estruturas.

A norma russa, CH-302-65 (apud GARG, 1972), baseia-se na fórmula de Janssen para determinação do carregamento estático. Recomenda valores experimentais para a relação de pressões horizontal e vertical e para o coeficiente de atrito do material com a parede, indicando para todos os cereais 0,44 e 0,4, respectivamente.

Durante a descarga, majora as pressões laterais, através de coeficientes, para prevenir sobrepressões de descarga ou caída de abóbadas e eliminar diferenças, decorrentes da forma e tipo do silo, em relação ao padrão circular de concreto armado. Os silos são divididos em três zonas verticais, sendo as correções fixadas para cada zona. Em silos circulares simples, os coeficientes variam de 1,3 na parte superior para 2,6 na parte inferior do silo. Esta norma não faz nenhuma referência a silos com descarga excêntrica.

A norma francesa, AFNOR (1975), pode ser usada somente para silos de concreto armado. Baseia-se na expressão de Janssen, modificada pela consideração da influência, na distribuição de pressões, do material contido no cone superior do silo e pela introdu-
ção de coeficientes de comportamento. Os valores da pressão normal e da pressão de atrito para a condição de carregamento são majorados pelo coeficiente 1,15 e os valores da pressão vertical pelo coeficiente 1,35.

São apresentados valores do ângulo de atrito interno para alguns materiais e o ângulo de atrito do material com a parede é adotado igual a uma fração deste ângulo de atrito interno, dependendo do tipo de acabamento da parede do silo.

A relação entre as pressões horizontal e vertical varia em função do ângulo de atrito interno do material e do ângulo de atrito do material com a parede. Para a condição de carregamento do silo vale \( \lambda = \frac{(1-m \cdot \text{sen } \phi)}{(1+m \cdot \text{sen } \phi)} \), sendo \( m = \frac{1-tg \phi_w}{tg \phi} \) e para a condição de descarga vale \( \lambda = \cos^2 \phi \).

Em silos com descarga excêntrica, as pressões de projeto são definidas a partir das pressões calculadas, como se o silo fosse de descarga centrada.

A norma americana, ACI 313 (1977), especifica para silos de concreto armado, recomenda o uso do método de Janssen ou do método de Reimbert para o cálculo das pressões estáticas, decorrentes do material em repouso. Para a relação entre as pressões horizontal e vertical usa a expressão do empuxo de Rankine.

As pressões de projeto para as paredes verticais do silo são obtidas multiplicando as pressões estáticas por apropriados coeficientes de sobrepressão, \( \varepsilon_q \). A parte do corpo do silo é dividida em cinco zonas, sendo as correções fixadas para cada zona, em função da relação altura/lado do silo.

Para o fundo, multiplicam-se as pressões estáticas ou pelo coeficiente de sobrepressão, \( \varepsilon_{q'} \) ou pelo coeficiente de impacto, \( \varepsilon_i \), prevalecendo o que levar a maior pressão total. Estes coeficientes são fixados em função do material de construção do fundo do silo (concreto ou aço).

O coeficiente de sobrepressão lateral, \( \varepsilon_{q'} \), no caso do método de Janssen, varia entre 1,35 no topo, para 1,65 no fundo dos silos com a relação altura/lado menor ou igual a dois; e de 1,65 no topo para 2,0 no fundo de silos com relação altura/lado maior ou igual a 5,0.

O coeficiente de impacto, \( \varepsilon_i \), varia de 1,0 a 1,4 em silos com fundo de concreto armado e de 1,25 a 1,75 em silos com fundo de aço.
Uma importante observação é que estes coeficientes não são válidos para silos com fluxo de massa.

Esta norma não especifica valores para as sobrepresões de descarga excêntrica, nem para impactos devido à caída de abóbada. Tampouco, especifica valores para os ângulos de atrito interno e externo com a parede, para os materiais armazenados.

A norma canadense, NRCC 13992 (1975), é específica para silos de nível de fazendas. Considera os grãos como semi-líquidos, tratando-os a partir de uma densidade definida como "densidade do líquido equivalente".

Para silos baixos, \( H/D \leq \tan \left( \frac{\pi}{2} + \frac{\pi}{4} \right) \), calcula as pressões pela teoria de Rankine e para silos altos \( H/D > \tan \left( \frac{\pi}{2} + \frac{\pi}{4} \right) \), usa a fórmula de Janssen.

Para projetos, recomenda um aumento de 25% na "densidade do líquido equivalente" em decorrência da influência do tempo de armazenagem ou do efeito de descarga.

A norma alemã, DIN 1055 (1986), é a única que tem acompanhado o avanço técnico-científico na área de pressões nos silos, ao longo destas últimas duas décadas.

Foi publicada pela primeira vez em novembro de 1964, coroando um notável trabalho dos especialistas alemães, sob a orientação do professor Klaus Pieper (Universidade de Braunschweig-Alemanha), no qual, as principais teorias e pesquisas experimentais sobre o assunto foram organizadas e sintetizadas sob a forma de recomendações, a serem facilmente utilizadas por projetistas.

A base para estas recomendações foi a teoria de Janssen e algumas simplificações, assumidas na ocasião como admissíveis:

- a relação entre as pressões horizontal e vertical foi fixada em 0,5 e 1,0, respectivamente, para a condição de carregamento e descarregamento do silo, independente do tipo de material armazenado;

- o ângulo de atrito do material com a parede foi admitido como uma fração do ângulo de atrito interno do material, independentemente das condições da superfície interna das paredes do silo. Foram indicadas as frações 0,75° e 0,60° para a condição de carregamento e descarregamento, respectivamente.

As pressões, assim obtidas, foram consideradas válidas para materiais granulares e não coesivos, armazenados na parte cilíndrica do silo. Para as paredes da tremonha nenhuma recomendação foi feita.
Para os silos com boca de saída excêntrica, esta norma recomendava um procedimento original para determinar a distribuição da pressão horizontal. Considerando a boca de saída como referência, criava um silo de seção transversal fictícia centrada, sendo as pressões obtidas pela diferença entre as pressões calculadas, como se o silo fosse de descarga centrada, com a seção fictícia e com a seção real, respectivamente.

Em maio de 1977, esta primeira publicação da norma alemã recebeu uma suplementação cujo objetivo principal foi tornar absolutamente claro o seu campo de aplicação, devido a vários acidentes, decorrentes de sua inadequada utilização, em alguns projetos.

Os trabalhos de revisão, todavia, iniciados pouco antes, em junho de 1976, sob a orientação do professor Klaus Pieper, pros seguiram com o objetivo maior de complementar o velho texto. Porém, somente em setembro de 1986, após mais de uma década de discussões e contribuições dos mais conhecidos especialistas mundiais no assunto e já sob a orientação do professor F. Wenzel (Universidade de Karlsruhe-Alemanha) é que foi publicado um novo texto para a norma alemã, DIN 1055 (1986).

Assim, este novo texto da norma alemã representa as especificações mais atualizadas para projetos de silos, abordando desde as características do material armazenado, até o tipo de fluxo que se desenvolve, dentro das células, com suas respectivas distribuições de pressões. Outra importante observação é que estas especificações são válidas para qualquer tipo de material de construção das paredes dos silos.

Pelo exposto, esta norma foi adotada como base para o presente estudo de silos hexagonais de madeira compensada, sendo na sequência apresentada em seus aspectos principais.

2.2.3 - Norma alemã - DIN 1055 (1986)

Segundo esta norma, são feitas recomendações para o cálculo das pressões que atuam nos silos, provenientes do armazenamento de materiais granulares, pulverulentos, mas não coesivos e sílgem.

Constitui-se de duas partes: o código propriamente dito, onde se expõem as recomendações, e um apêndice onde são dadas informações complementares.
a - Campo de aplicação

Esta norma aplica-se a silos verticais e prismáticos, com dimensões obedecendo os seguintes limites:
- limite inferior \( H/D > 0,8 \)
- limite superior \( D_{VC}/\gamma \leq 25m \)

onde, \( H \) é a altura total do silo (corpo e tremonha); \( D \) é o diâmetro da parte prismática; \( D_{VC} \) é a pressão vertical; e \( \gamma \) o peso específico do material armazenado.

São apresentadas recomendações para a determinação das pressões nas paredes do corpo do silo e no fundo, podendo ser plano ou tremonhado.

b - Tipos de fluxo

Influenciado pela forma da tremonha do silo (cônica ou côneiforme), pela sua inclinação em relação à direção vertical \( (90^\circ - \theta) \), pela rugosidade da parede \( (\mu) \) e propriedades do material armazenado, é possível ocorrer, na descarga do silo, dois tipos básicos de fluxo: fluxo de massa e fluxo de funil, como ilustrado na figura 2.11.

![Diagrama com tipos de fluxo](image)

I - Fluxo de funil  
II - Fluxo de massa

Fig. 2.11 - Tipos de fluxo.
Para prever qual destes tipos de fluxo prevalece no escoamento de materiais em silos com descarga centrada, pode-se utilizar as figuras 2.12-a e 2.12-b, para silos com tremonha cônica e em forma de cunha, respectivamente.

a) Silos com tremonha cônica.

b) Silos com tremonha em forma de cunha.

Fig. 2.12 - Zona de transição entre fluxo de massa e fluxo de funil (descarga centrada).
c - Características do material armazenado e de sua interação com as paredes do silo

Para determinar as características, tanto dos materiais a armazenar, como de sua interação com as paredes dos silos, a norma alemã recomenda a utilização de um modelo de silo experimental, especialmente desenvolvido para esta finalidade (PIEPER e SCHÜTZ, 1980).

Os quadros 2.1 e 2.2 reproduzem as tabelas da norma, nas quais são dados os valores do peso específico, γ, e dos parâmetros λ (relação entre as pressões horizontal e vertical) e μ (coeficiente de atrito entre o material e a parede), relativos aos materiais mais comuns a armazenar.

<table>
<thead>
<tr>
<th>Material</th>
<th>Peso Específico KN/m³</th>
<th>Relação entre as pressões λ = P_H/P_V</th>
<th>Coeficiente de atrito com a parede</th>
<th>Coeficiente de sobrepresseão h</th>
<th>Coeficiente do material δ_G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigo</td>
<td>9,0</td>
<td>0,60</td>
<td>0,60</td>
<td>0,40</td>
<td>0,25</td>
</tr>
<tr>
<td>Milho</td>
<td>8,0</td>
<td>0,60</td>
<td>0,60</td>
<td>0,40</td>
<td>0,25</td>
</tr>
<tr>
<td>Cevada</td>
<td>8,0</td>
<td>0,65</td>
<td>0,50</td>
<td>0,35</td>
<td>0,25</td>
</tr>
<tr>
<td>Farinha cereal</td>
<td>7,0</td>
<td>0,40</td>
<td>0,50</td>
<td>0,35</td>
<td>0,25</td>
</tr>
<tr>
<td>Açúcar</td>
<td>9,5</td>
<td>0,60</td>
<td>0,55</td>
<td>0,45</td>
<td>0,25</td>
</tr>
<tr>
<td>Areia</td>
<td>16,0</td>
<td>0,50</td>
<td>0,60</td>
<td>0,50</td>
<td>0,40</td>
</tr>
<tr>
<td>Cascalho para concreto</td>
<td>18,0</td>
<td>0,60</td>
<td>0,60</td>
<td>0,50</td>
<td>0,40</td>
</tr>
<tr>
<td>Calcário</td>
<td>13,0</td>
<td>0,65</td>
<td>0,55</td>
<td>0,50</td>
<td>0,40</td>
</tr>
<tr>
<td>Cimento</td>
<td>18,0</td>
<td>0,50</td>
<td>0,60</td>
<td>0,55</td>
<td>0,45</td>
</tr>
<tr>
<td>Óxido de alumínio</td>
<td>16,0</td>
<td>0,65</td>
<td>0,50</td>
<td>0,45</td>
<td>0,40</td>
</tr>
<tr>
<td>Fosfato de Thomas</td>
<td>12,0</td>
<td>0,65</td>
<td>0,50</td>
<td>0,45</td>
<td>0,40</td>
</tr>
</tbody>
</table>

Quadro 2.1 - Características dos materiais.
<table>
<thead>
<tr>
<th>Material</th>
<th>Peso Específico KN/m³</th>
<th>Relação entre as pressões $\lambda = P_h/P_v$</th>
<th>Coeficiente de atrito com a parede $\mu_1$</th>
<th>Coeficiente de sobrepressão $\delta_h$</th>
<th>Coeficiente do material $\delta_d$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soja</td>
<td>8,0</td>
<td>0,70</td>
<td>0,50</td>
<td>0,35</td>
<td>1,4</td>
</tr>
<tr>
<td>Beterraba</td>
<td>7,0</td>
<td>0,60</td>
<td>0,55</td>
<td>0,55</td>
<td>1,3</td>
</tr>
<tr>
<td>Porragem misturada ¹</td>
<td>6,0</td>
<td>0,50</td>
<td>0,40</td>
<td>0,25</td>
<td>1,7</td>
</tr>
<tr>
<td>cascas</td>
<td>6,0</td>
<td>0,50</td>
<td>0,40</td>
<td>0,30</td>
<td>1,5</td>
</tr>
<tr>
<td>Batatas</td>
<td>8,0</td>
<td>0,80</td>
<td>0,50</td>
<td>0,40</td>
<td>1,4</td>
</tr>
<tr>
<td>Carvão</td>
<td>1,0</td>
<td>0,50</td>
<td>0,50</td>
<td>0,45</td>
<td>1,3</td>
</tr>
<tr>
<td>Coque</td>
<td>8,0</td>
<td>0,60</td>
<td>0,60</td>
<td>0,55</td>
<td>1,3</td>
</tr>
<tr>
<td>Cinzas</td>
<td>15,0 ²</td>
<td>0,50</td>
<td>0,70</td>
<td>0,60</td>
<td>1,2</td>
</tr>
<tr>
<td>pê de carvão</td>
<td>8,0</td>
<td>0,70</td>
<td>0,55</td>
<td>0,50</td>
<td>1,2</td>
</tr>
<tr>
<td>Banhoria de Caldeira</td>
<td>12,0</td>
<td>0,50</td>
<td>0,50</td>
<td>0,60</td>
<td>1,4</td>
</tr>
<tr>
<td>Farro</td>
<td>22,0</td>
<td>0,60</td>
<td>0,55</td>
<td>0,50</td>
<td>1,3</td>
</tr>
<tr>
<td>Cal hidratada</td>
<td>6,0</td>
<td>0,70</td>
<td>0,50</td>
<td>0,35</td>
<td>1,2</td>
</tr>
</tbody>
</table>

¹) Sem soja triturada, copra e semelhantes. Nos demais, somente para triturados secos e também com alto teor de farinhas

²) Para cinzas de carvão em pedra pode se reduzir o peso específico para $\gamma = 12$KN/m³

Quadro 2.2 - Características dos materiais.
(Complemento do quadro 2.1)

A relação entre as pressões horizontal e vertical é definida, como uma função do ângulo de atrito interno do material, pela expressão $\lambda = 1,2 (1 - \tan \theta)$. O coeficiente de atrito do material com a parede é dividido em três classes, relacionadas ao tipo de superfície com a qual o material entra em contato:

- Classe 1 - $\mu_1$ - atrito praticamente dentro do material, como por exemplo: chapas onduladas e trapezoidais;
- Classe 2 - $\mu_2$ - paredes medianamente lisas, como por exemplo: concreto, reboco, madeira e chapas de aço com parafusos ou rebites;
- Classe 3 - $\mu_3$ - paredes lisas, como por exemplo: chapas de aço ou alumínio soldadas ou dobradas, materiais sintéticos e superfícies revestidas.
d - Cálculo das pressões no corpo do silo

A apresentação das pressões atuantes no corpo do silo segue a notação da figura 2.13.

a) Geometria
- \( D \) - diâmetro interno do silo, m
- \( r \) - raio interno do silo, m
- \( A \) - área da seção transversal interna do silo, m²
- \( U \) - perímetro, m
- \( \alpha \) - excentricidade da boca de saída do silo, m
- \( t \) - espessura da parede, m
- \( H \) - altura total do silo, m
- \( h \) - altura do corpo do silo, m
- \( h_t \) - altura da tremonha do silo, m
- \( \theta \) - inclinação da tremonha

b) Parâmetros
- \( \gamma \) - peso específico do material armazenado, KN/m³
- \( \lambda \) - relação entre as pressões, \( \frac{p_h}{p_v} \)
- \( \mu \) - coeficiente de atrito do material com a parede, \( \frac{p_W}{p_h} \)
- \( \delta \) - ângulo de repouso do material
- \( r_H \) - raio hidráulico, \( r_H = A/U \), m

c) Pressões
- \( p_h \) - pressão normal por m² de superfície de parede
- \( p_h^V \) - pressão normal por m² de superfície de parede vertical
- \( p_v \) - pressão vertical por m² de superfície transversal do silo
- \( p_W \) - pressão de atrito por m² de superfície de parede
- \( p_p \) - pressão no fundo por m² de superfície em silos com fundo plano

Índices: \( c \) - carregamento; \( d \) - descarregamento

Fig. 2.13 - Notação para pressões no corpo do silo.
dl- Pressões de carregamento

As pressões de carregamento na parte vertical do silo são baseadas na teoria de Janssen, ou seja:

\[ P_{vc} = \frac{\gamma \cdot H}{\mu \cdot \lambda} \cdot \phi(Z) \]

\[ P_{hc} = \lambda \cdot P_{vc} \]

\[ P_{wc} = \mu \cdot \lambda \cdot P_{vc} \]

sendo,

\[ \phi(Z) = 1 - e^{-Z/Z_0} \]

\[ Z_0 = \frac{\gamma}{\mu \cdot \lambda} \]

d2- Pressões de descarregamento

As pressões devido ao descarregamento do silo são obtidas pela majoração das cargas de carregamento através de coeficientes de sobrepressão:

\[ P_{wd} = P_{wc} \cdot 1,1 \]

\[ P_{hd} = P_{hc} \cdot \varepsilon_h \]

\[ P_{vd} < P_{vc} \]

Para silos com \( H/D > 5\mu \), onde as pressões de descarregamento se apresentam com toda a intensidade, o coeficiente \( \varepsilon_h \) é dado nos quadros 2.1 e 2.2, nos silos com \( H/D \leq 2,5\mu \), este coeficiente pode ser admitido igual a unidade.

Em silos com fluxo de funil, para prevenir eventuais irregularidades na pressão lateral, durante o estágio de descarregamento, deve ser considerada, mesmo em silos com descarga centrada, uma pressão horizontal adicional sobre as paredes, definida por um parâmetro empírico \( \beta \):
\[ \beta = \beta_h \cdot \beta_a \cdot \beta_r \cdot \beta_G \]

sendo \( \beta_h, \beta_a, \beta_r \) e \( \beta_G \) coeficientes definidos a seguir.

- \( \beta_h \) - coeficiente de esbeltez do silo

\[
H/D < 1 \rightarrow \beta_h = 1 \\
1 \leq H/D \leq 4 \rightarrow \beta_h = 0,2 \cdot H/D + 0,8 \\
H/D > 4 \rightarrow \beta_h = 1,6
\]

onde, "\( H \)" é a altura total do silo e "\( D \)" o diâmetro da parte prismática.

- \( \beta_a \) - coeficiente de excentricidade

\[
a/r < 1/3 \rightarrow \beta_a = 1 \\
a/r \geq 1/3 \rightarrow \beta_a = 3 \cdot (a/r)
\]

onde, "\( a \)" é excentricidade da boca de saída do silo e "\( r \)" é o raio da parte prismática.

- \( \beta_r \) - coeficiente de rigidez do silo

\[
r/t \leq 70 \rightarrow \beta_r = 0,3 \\
r/t \geq 100 \rightarrow \beta_r = 0,05
\]

\( 70 < r/t < 100 \rightarrow \) interpolação linear

onde, "\( r \)" é o raio da parte vertical prismática do silo e "\( t \)" a espessura média da parede.

- \( \beta_G \) - coeficiente do material, dado nos quadros 2.1 e 2.2 para cada tipo de material considerado.
Esta pressão adicional deve ser considerada atuando em áreas diametralmente opostas da parede lateral, \( S^2 = 0,8 \, \text{A/\text{U}} \), conforme a figura 2.14.

Fig. 2.14. Pressão adicional de descarga em silos com fluxo de funil

Como alternativa, esta pressão adicional pode também ser considerada pela multiplicação da pressão uniformemente distribuída por um coeficiente empírico \( k \), como mostra a figura 2.15.

- silos com seção circular:
  \[
  \frac{r}{t} \leq 70 \quad \Rightarrow \quad k = 1,0 + 0,5 \times (0,5 + 0,02 \times \frac{r}{t})
  \]
  \[
  \frac{r}{t} \geq 100 \quad \Rightarrow \quad k = 1,0 + 3 \times \frac{H}{D}
  \]
  \[
  70 < \frac{r}{t} < 100 \quad \Rightarrow \quad \text{interpolação linear}
  \]

- silos com seção poligonal:
  \[
  k = 1,0 + 0,8 \times \beta
  \]

Fig. 2.15. Processo alternativo, para determinação da pressão adicional de descarga, em silos com fluxo de funil
Para silos com fluxo de massa, também deve ser considerada uma pressão adicional, atuando na zona de transição da tremo-nha com o corpo do silo, conforme ilustra a figura 2.16.

**Fig. 2.16. Pressões adicionais de descarregamento em silos com fluxo de massa**

**e-** Pressões sobre o fundo do silo

**el-** Silos com fundo plano

A pressão vertical no fundo de silos com fundo plano ($\theta < 20^\circ$) é determinada multiplicando a pressão vertical de carregamento para este nível pelo coeficiente de sobregressão $\varepsilon_b$.

Para silos com $H/D \geq 1.5$, esta pressão é dada por:

$$P_b = \varepsilon_b \cdot P_{vc} \leq \gamma \cdot h$$

sendo $\varepsilon_b = 1.5$ para todos os casos com exceção de silos com fluxo de funil e materiais que propiciem a formação de abóbadas, tais como milho e clinquer, donde $\varepsilon_b = 1.8$. 


Em silos com $H/D < 1,5$, as recomendações são as mesmas, porém o valor máximo de $P_d$ não deve ultrapassar o valor $\gamma_Z$, onde $Z^*$ é a altura efetiva de material, como mostra a figura 2.13.

---

**e2 - Silos com fundo tremonhado**

Para silos com fundo tremonhado ($\theta \geq 20^\circ$), o carregamento sobre as paredes inclinadas da tremonha constitui-se de duas partes: cargas devido ao material dentro da tremonha e cargas devido ao material acima da tremonha, conforme as figuras 2.17 e 2.18. Não existe diferença entre a condição de carga e descarga do silo, devido às fórmulas compreenderem ambos os casos, portanto, elas não satisfazem às condições de equilíbrio.

Fig. 2.17. Cargas devido ao material na tremonha

\[
P_n = 2A_F H \cdot \lambda \cdot (\text{sen}^2 \theta) / \sqrt{H}
\]

\[
P_w = P_n / 2
\]

Fig. 2.18. Cargas devido ao material sobre a tremonha

\[
P_{no} = \left( P_{vc} \cdot e_{b} \cdot \cos^2 \theta + P_{hc} \cdot \text{sen}^2 \theta \right) \left( 1 + \frac{\text{sen} \theta}{4 \mu} \right)
\]

\[
P_{nu} = P_{vc} e_{b} \cdot \cos^2 \theta
\]

\[
P_w = P_n / 2
\]
2.3- Carregamentos Devido à Ação do Vento

Na determinação das ações do vento sobre a estrutura do silo, seguiu-se as recomendações da norma brasileira ABNT-NBR 6125 (1982), "Forças devido ao vento em edificações".

Em se tratando de formato hexagonal do silo, para obtenção do coeficiente de arrasto, $C_a$, valeu-se dos estudos de Pris em 1961 (apud BLESSMANN, 1983).

Pris estudou a ação do vento em cilindros longos e curtos de seção poligonal regular, apoiados sobre uma base plana, com $n=2$ (caso limite de placa), 3, 4, 5, 6, 8, 10 e 12 lados.

A figura 2.19 reproduz os valores de $C_a$ apresentados por Pris. Em alguns casos foram obtidos valores diferentes, em modelos de mesma configuração, porém de dimensões diferentes. Na figura são indicados os dois valores, tomando-se para o traçado da poligonal, o valor médio.

![Diagrama](image)

a) vento sobre a aresta    b) vento sobre a face

$H/D$ - relação altura/lado do cilindro (alteamento do cilindro)

$n$ - número de lados do polígono

Fig. 2.19. Coeficiente de arrasto em cilindros poligonais
Portanto, para cilindros hexagonais ($n = 6$), os coeficientes médios de arrasto recomendados são:

- Vento sobre a aresta do hexágono
  \[ \frac{H}{D} < 2,5 \quad C_a = 0,98 \]
  \[ \frac{H}{D} = \infty \quad C_a = 1,49 \]

- Vento sobre a face do hexágono
  \[ \frac{H}{D} < 2,5 \quad C_a = 0,83 \]
  \[ \frac{H}{D} = \infty \quad C_a = 1,32 \]

A força total do vento sobre o cilindro é proporcional à área frontal efetiva $A_e$, sobre a qual ele incide (figura 2.20)

![Diagrama](image)

(a) vento sobre a aresta  
(b) vento sobre a face

Fig. 2.20. Área frontal efetiva dos cilindros hexagonais

Assim, observa-se que para silos com $\frac{H}{D} < 2,5$ a pior condição para o cálculo é o vento incidindo sobre a aresta, enquanto para silos com $\frac{H}{D} = \infty$, o vento incidindo sobre a face do hexágono.
3- CHAPAS DE MADEIRA COMPENSADA

3.1- Generalidades

O consumo cada vez maior de materiais de construção e as crescentes dificuldades para obtenção de madeira maciça, com dimensões e qualidade adequadas às diversas necessidades, juntamente com a grande explosão na tecnologia de fabricação ocorrida pouco antes da metade deste século, conduziram ao desenvolvimento da indústria de produtos derivados da madeira.

Dentre estes produtos, os compostos laminados constituem uma considerável porção dos derivados de madeira, usados atualmente. São obtidos pela associação de lâminas de madeira, em sua forma original ou modificadas, coladas com adesivos ou ligadas mecânicamente por elementos discretos, tais como pregos e parafusos.

Dependendo da disposição das lâminas, estes laminados podem ser classificados como paralelos ou transversais.

A madeira laminada colada, composta por lâminas de espessura entre 1,5 e 3,0cm, podendo excepcionalmente chegar a 5cm, é um exemplo típico de laminação paralela. Os eixos longitudinais das lâminas coincidem com a direção de suas fibras e são paralelos ao eixo longitudinal da peça, figura 3.1-a-b.

Atualmente, estes laminados paralelos estão sendo produzidos com lâminas de menor espessura, sendo conhecidos como microlaminados. O custo adicional de adesivo necessário devido ao grande número de linhas de cola, é compensado pelo acréscimo de resistência e rigidez.

A madeira compensada ou simplesmente compensado é o composto laminado transversal mais utilizado em aplicações estruturais. As lâminas adjacentes, com espessura entre 1mm e 5mm, são propositadamente orientadas com direções de fibras, formando diferentes ângulos, em função das características desejadas para a chapa final. Na prática, é comum defasar estas lâminas de 90º, conforme a figura 3.1-c.

Outro produto laminado de interesse são os painéis sanduíches, compostos por lâminas de face de alta resistência e rigidez e por um núcleo de características inferiores, figuras 3.1-d-e.
3.2- Madeira Compensada

A industrialização da madeira compensada iniciou nos Estados Unidos e na Alemanha, a partir de algumas espécies de madeira de baixa densidade e poucas formas de arranjos das lâminas. Atualmente, utiliza a maioria das espécies, comercialmente importantes, e uma grande variedade de tipos de composição, pelos principais países do mundo.

Essencialmente, a madeira compensada constitui-se de dois componentes: as lâminas de madeira e o adesivo.

As lâminas de madeira são obtidas por corte direto da madeira bruta, através de facas. Este corte pode ser executado por fazeamento, forçando-se a faca contra o tronco, ou por corte rotatório, fazendo o tronco girar em torno de seu eixo contra uma faca fixa.
Vários tipos de lâminas de madeira dura para superfície de compensado decorativo são obtidas por faqueamento, entretanto o compensado estrutural é sempre produzido, a partir de lâminas obtidas por corte rotatório, conforme ilustra a figura 3.2.

![Diagrama de Corte Rotatório](image)

a) Esquema do corte rotatório

![Inclinação Correta da Faca](image)

b) Inclinação correta da faca

![Inclinação Incorreta da Faca](image)
c) Inclinação incorreta da faca

**Fig. 3.2. Obtenção de lâminas de madeira por corte rotatório**

Como consequência deste corte rotatório, o plano das lâminas coincide com o plano longitudinal-tangencial (LT) da madeira. A variação dos parâmetros elásticos e de resistência de uma lâmina de madeira neste plano LT, segundo BODIG e JAYNE (1982), pode ser representada por um gráfico de coordenadas polares, conforme a figura 3.3 ilustra, para o caso do módulo de elasticidade. Observa-se o módulo atingindo valor máximo, na direção longitudinal e mínimo, na direção tangencial.
Fig. 3.3 - Variação dos parâmetros característicos das lâminas de madeira no plano LT.

O adesivo é predominantemente de origem sintética (fenol-formaldeído, resorcínol-formaldeído), tendo a função de interligar as lâminas.

Segundo BOGIG e JAYNE (1982), o volume de adesivo utilizado no compensado é quase sempre inferior a 1% do volume total do composto, assim, para finalidades práticas, a sua contribuição nas propriedades deste é mínima. Entretanto, deve ser enfatizada a importância da qualidade do adesivo, fundamental para as características de resistência e elasticidade da chapa.

A designação de uso final do compensado é função da espécie e qualidade das lâminas do arranjo, bem como do tipo de adesivo usado na fabricação da chapa.

As chapas de madeira compensada, normalmente são constituídas por um número ímpar de lâminas, dispostas de tal forma que as direções das fibras das lâminas alternadas sejam paralelas e que as direções das fibras das lâminas adjacentes formem um ângulo de 90°. A figura 3.4 ilustra a composição de uma chapa com cinco lâminas, destacando as lâminas de face e a lâmina do núcleo (central).

Fig. 3.4. Compensado com número ímpar de lâminas.
Usualmente, todas as chapas de madeira compensada devem ser estruturalmente balanceadas, isto é, devem ser simétricas em relação ao seu plano central. Assim, as lâminas de cada lado deste plano, equidistantes do mesmo, devem ter as mesmas propriedades físicas, mesma espessura e orientação de fibras. O plano de simetria, na lâmina do núcleo, implica na existência de um número ímpar de lâminas.

Na fabricação das chapas compensadas, este balanceamento deve ser, rigorosamente, seguido para garantir que estas permaneçam planas, quando sujeitas a condições de temperatura e umidade, diferentes daquelas de fabricação.

Outros tipos de chapas balanceadas podem ser obtidos, como por exemplo, utilizando lâminas de diferentes espécies de madeira; entretanto, os riscos de empenamentos das chapas são bem maiores.

A opção de fabricar os compensados com um número par de lâminas, embora não viole as condições de balanceamento do mesmo, devido à colocação de duas lâminas centrais com mesma orientação de fibras, não tem sido bem aceita comercialmente, visto que, o ganho de eficiência do produto obtido não corresponde ao custo adicional de uma lâmina e adesivo. A figura 3.5 mostra a composição de uma chapa com seis lâminas, destacando as duas lâminas centrais, com direções de fibras parelhas.

![Diagrama de compensado com número par de lâminas](image)

**Fig. 3.5.** Compensado com número par de lâminas

De uma maneira geral, pode-se dizer que o compensado possui duas características peculiares: as lâminas de madeira são ligadasumas as outras por adesivos sintéticos, tal como ocorre na madeira laminada; e a orientação do eixo de simetria destas lâminas quase, contrastando com a madeira laminada, são ajustados transversalmente, de acordo com uma disposição pré-determinada de forma a
se obter uma equivalência das propriedades elásticas e de resistência, nas direções principais da chapa.

A eficiência desta composição transversal pode ser visualizada pela análise dos parâmetros característicos da chapa, em função dos parâmetros das lâminas.

A figura 3.6-a expõe, em linha cheia, a variação do módulo de elasticidade médio da composição de duas lâminas de madeira de mesma espécie e espessura, baseada na variação do módulo de elasticidade destas lâminas, apresentada na figura 3.3. Observa-se que os valores mínimos de E ocorrem nas direções de 45° com os eixos longitudinal e transversal.

Na figura 3.6-b é apresentado, também em linha cheia, o diagrama para uma composição de lâminas, onde a direção das fibras nas lâminas é desalinizada de um ângulo de 30°. Neste caso, consegue-se um valor de E quase constante, aproximando-se assim a isotropia do material.

**Fig. 3.6. Composição das lâminas e variação dos parâmetros elásticos dos compostos obtidos**

3.3- Parâmetros Elásticos e de Resistência da Madeira Compensada

Em decorrência da aplicação estrutural das chapas de madeira compensada, a determinação de seus parâmetros elásticos e de resistência tem merecido especial atenção dos pesquisadores.
Fundamentalmente, os trabalhos se dirigem a dois objetivos específicos:
- formulação de equações teóricas para avaliação destes parâmetros, a partir das propriedades das lâminas individuais;
- determinação experimental destes parâmetros, a partir da proposição de métodos de ensaios compatíveis com a teoria e específicos para este produto.

O compensado normal, isto é, de número ímpar de lâminas, balanceado, com lâminas alternadas paralelas e adjacentes perpendiculares, pode ser considerado, para análise estrutural, como um material plano ortotrópico, ou seja, com simetria elástica, em relação a dois planos perpendiculares, sendo como todo material ortotrópico, caracterizado por propriedades direcionais. As lâminas de madeira são consideradas perfeitamente elásticas em seus planos e o efeito da cola é negligenciado.

As direções principais de elasticidade (X e Y), são identificadas como na figura 3.7. A direção X é paralela à direção das fibras da lâmina de face, sendo a direção Y perpendicular a estas fibras do compensado.

Fig. 3.7. Planos de simetria elástica e direções principais do compensado

Assim, a relação constitutiva entre tensões e deformações elásticas, desenvolvidas nas chapas de madeira compensada quando do sua utilização em soluções estruturais, pode ser representada pela lei de Hooke particularizada para o estado plano de tensões: 
\[ \{\varepsilon\} = [S] \cdot \{\sigma\} \]
\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix}
= \begin{bmatrix}
S_{11} & S_{12} & 0 \\
S_{21} & S_{22} & 0 \\
0 & 0 & S_{66}
\end{bmatrix}
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix}
\]

sendo,

\[
\begin{align*}
S_{11} &= \frac{1}{E_x} \\
S_{22} &= \frac{1}{E_y} \\
S_{12} &= S_{21} = -\nu_{xy} / E_x = -\nu_{yx} / E_y \\
S_{66} &= \frac{1}{G_{xy}}
\end{align*}
\]

Explicitando-se o vetor das tensões, através da inversão da matriz \([S]\), tem-se: \([\sigma] = [C] \cdot [\varepsilon]\)

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix}
= \begin{bmatrix}
C_{11} & C_{12} & 0 \\
C_{21} & C_{22} & 0 \\
0 & 0 & C_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix}
\]

sendo,

\[
\begin{align*}
C_{11} &= E_x \cdot E_y / (E_y - E_x (\nu_{xy})^2) \\
C_{12} &= C_{21} = E_x \cdot E_y \cdot \nu_{yx} / (E_y - E_x (\nu_{yx})^2) \\
C_{22} &= E_x \cdot E_y / (E_x - E_y (\nu_{xy})^2) \\
C_{66} &= C_{xy}
\end{align*}
\]

ou seja:

\([C] = [S]^{-1}\)
Diante disto, evidencia-se a necessidade do conhecimento dos parâmetros elásticos do composto, $E_x$, $E_y$, $G_{xy}$, $v_{xy}$ e $v_{yx}$, para solução dos problemas nos quais este é utilizado.

Vários métodos usados na obtenção de constantes elásticas de madeiras e seus compostos, foram sumarizados por HEARMON (1948). Muitos destes métodos requerem complexos aparatos, envolvendo grandes dificuldades de medidas, tornando a determinação destas constantes um processo demorado e dispendioso.

GOODMAN e BODIG (1970-1971) empregaram testes de compres são em pequenos corpos de prova retangulares e testes de torção em placas para obter o módulo de elasticidade, coeficiente de Poisson e módulo de elasticidade transversal para algumas espécies de madeiras americanas.

BODIG e GOODMAN (1973) tentaram prever as constantes elásticas da madeira, através de correlações com sua densidade. Este método apresentou-se satisfatório para o módulo de elasticidade, apenas razoável para o módulo de elasticidade transversal e muito ruim para os coeficientes de Poisson.

HEARMON e ADAMS (1952) se utilizaram de testes de flexão e torção em placas retangulares, para determinar as constantes elásticas de chapas ortotrópicas, a partir de seus deslocamentos transversais. Para simplificar os cálculos, estabeleceram condições limites para estes deslocamentos. Mais tarde, GUNNERSON et al. (1973) sugeriram um fator de correlação, para avaliar as deformações das placas de madeira, em alguns casos dos testes de flexão realizados por HEARMON e ADAMS (1952).

Tentando evitar os testes de flexão em placas, TSAI (1965) propôs uma metodologia de ensaios, onde todas as constantes elásticas de chapas ortotrópicas são determinadas, a partir de ensaios de flexão em pequenas tiras e ensaios de torção em placas destes materiais.

O teste de torção em placas retangulares, para determinar o módulo de elasticidade transversal de chapas isotrópicas, primeiramente proposto por Nadai (apud LEE e BIBLIS, 1977), foi extendido por MARCH, KUENZI e KOMMERS (1942) para chapas ortotrópicas, e, mais tarde, (1976), adotado pela American Society for Testing and Materials (ASTM-D3044-76, 1982).

Partindo dos procedimentos de ensaios de TSAI (1965), LEE
e BIBLIS (1977) demonstraram experimentalmente ser possível de
derminar as constantes elásticas do compensado de forma simples e
eficiente, simplesmente racionais do ensaios de flexão em ti-
ras e torção em placas. Mais tarde, LEE e BIBLIS (1980), estudan-
do o módulo de elasticidade, obtido de ensaios de compressão, suge-
rem um novo corpo de prova (retangular 2" x 2" x 8"), criticando o
tradicional modelo adotado pela ASTM - D3501-76 (1982), (placa 7,5"
15" x espessura).

RIBEIRO (1986), desenvolvendo um trabalho sobre determi-
nção de propriedades elásticas e de resistência dos compensados
estruturais, após ampla revisão bibliográfica e inúmeros ensaios
com compensados constituídos por láminas de Pinho do Paraná, pro-
pôs uma metodologia de ensaios, para obtenção destas constantes, ba-
sicamente seguindo as recomendações da American Society for Testing
and Materials - ASTM.

Na presente pesquisa, adotou-se esta metodologia, expon-
do-se, a seguir, seus aspectos mais importantes.

3.4- Metodologia de Ensaio

Neste estudo, o compensado é considerado como material
plano ortotrópico, calculando-se suas propriedades elásticas e de
resistência, através de ensaios de tração, compressão, flexão e tor-
ção, como se sua seção transversal fosse de único material.

3.4.1- Ensaio de tração

A realização destes ensaios tem por objetivo determinar
o módulo de elasticidade e a resistência à tração, bem como, o coe-
ficiente de Poisson, tanto na direção paralela às fibras de face,
como na direção normal a estas fibras do compensado.

O corpo de prova constitui-se de uma tira de compensado
rebaixada, conforme ilustra a figura 3.8, tendo suas fibras de fa-
ce longitudinais ou transversais dependendo do tipo de caracteriza-
cão desejada.

![Fig. 3.8. Corpo de prova de tração](image-url)
O módulo de elasticidade à tração $E_{pt}$, é obtido a partir da regressão linear entre o carregamento aplicado ($N$) e os alongamentos ($\Delta l$), registrados por relógios comparadores, instalados na região central do corpo de prova ($l = 10\text{cm}$).

$$\Delta l = \frac{N \cdot 1}{E_{pt} \cdot A} \Rightarrow E_{pt} = \frac{N}{\frac{\Delta l}{A}}$$

A resistência à tração $f_{ptk}$, é estabelecida pelo quociente entre a carga de ruptura ($N_u$) e a seção transversal do corpo de prova no rebaixo ($A$).

$$f_{ptk} = \frac{N_u}{A}$$

O coeficiente de Poisson é obtido com o corpo de prova instrumentado mediante extensômetros elétricos, ao invés de relógios comparadores. Estes extensômetros fornecem as deformações transversais ($\varepsilon_T$) e longitudinais ($\varepsilon_L$) do corpo de prova, em relação ao carregamento aplicado ($N$).

A determinação do coeficiente de Poisson ocorre, a partir das regressões lineares entre estas deformações e o carregamento aplicado, relacionando as deformações transversais com as longitudinais:

$$\nu = -\frac{\varepsilon_T}{\varepsilon_L}$$

3.4.2- Ensaios de compressão

Os objetivos e determinações dos ensaios de compressão são os mesmos dos ensaios de tração, com exceção do coeficiente de Poisson.

O corpo de prova constitui-se de tiras de compensado, coladas conforme ilustra a figura 3.9, tendo suas fibras de face longitudinal ou transversais, dependendo do tipo de caracterização de sejada.
Quantas espessuras forem necessárias para obter-se 5cm

Fig. 3.9. Corpo de prova de compressão

3.4.3- Ensaios de flexão

Também nos ensaios de flexão os objetivos e determinações são os mesmos dos ensaios de tração, com exceção do coeficiente de Poisson.

A flexão é realizada em tiras de compensado, conforme ilustra a figura 3.10. As fibras das tiras podem ser longitudinais ou transversais, dependendo do tipo de caracterização desejada.

Fig. 3.10. Corpo de prova de Flexão
O módulo de elasticidade $E_{pf}$ é obtido, a partir da regressão linear entre o carregamento aplicado ($F$) e os deslocamentos ($\omega$), registrados por um relógio comparador, instalado na posição central do corpo de prova.

$$\omega = \frac{F l^3}{48 E_{pf} \cdot l} \quad \Rightarrow \quad E_{pf} = \left(\frac{F}{\omega}\right) \left(\frac{l^3}{48l}\right)$$

onde $l$ é o momento de inércia do corpo de prova em sua seção central.

A resistência à flexão $f_{pfr}$ é estabelecida, a partir da expressão tradicional da tensão de flexão $\sigma = M \cdot Y/l$, utilizando-se o momento de flexão na ruptura:

$$M_u = F_u \cdot l/4 \quad \Rightarrow \quad f_{pfr} = \frac{F_u \cdot l}{4W}$$

onde, $W$ é o momento resistente da seção.

3.4.4- Ensaios de torção

Os ensaios de torção em placas de compensado são realizados para determinar o módulo de elasticidade transversal do compensado, $G_{XY}$.

O corpo de prova constitui-se de uma placa quadrada, com as fibras de face paralelas a um de seus bordos, estando apoiada em dois vértices opostos e carregada nos outros dois, conforme ilustra a figura 3.11.

* $25 \cdot e \leq l \leq 40 \cdot e$ - distância entre apoios, recomendada pelo método ASTM-D3044-76 (1982).

Fig. 3.11. Corpos de prova do ensaio de torção
Este tipo de carregamento gera solicitação de torção pura na placa, conforme demonstra Timoshenko e Woinowsky-Krieger (1959), sendo a expressão geral de sua deformada, para o sistema de coordenadas posicionado no centro da placa, dada por:

\[
\omega = \frac{3 M_{xy}}{E^3 \cdot G_{xy}} \left[ 2x \cdot y + 1 \left( y - x \right) - \frac{1^3}{2} \right]
\]

onde \( M_{xy} \) é o momento torçor atuante na placa: \( M_{xy} = (F/2)/2 + M_{xy} = F/4 \) (Timoshenko e Woinowsky-Krieger, 1959).

Assim, o módulo de elasticidade transversal do compensado pode ser obtido, a partir da regressão linear entre o carregamento aplicado (\( F \)) e os deslocamentos verticais (\( \omega_0 \)) registrados por um relógio comparador instalado no ponto central da placa. Da equação anterior, fazendo \( x = y = 0 \), tem-se:

\[
\omega_0 = \frac{3 F l^2}{8 \cdot E^3 \cdot G_{xy}} + G_{xy} = \frac{F}{\omega_0} \left( \frac{3}{8} \cdot \frac{l^2}{E^3} \right)
\]

Observa-se, que para os vértices carregados da placa, os deslocamentos verticais (\( \omega_1 \)) valem o dobro do deslocamento do ponto central, isto é, fazendo-se \( x = y = 1/2 \) ou \( x = -y = -1/2 \) na equação, tem-se:

\[
\omega_1 = \frac{3 F l^2}{4 E^3 G_{xy}} = 2 \omega_0
\]

Esta propriedade, normalmente, é utilizada para checar os dados experimentais. A metade da média dos deslocamentos verticais dos vértices carregados deve aproximar-se do deslocamento do ponto central da placa.
4- PARAFUSOS AUTO-ATARRAXANTES

Os parafusos auto-atarraxantes são produzidos nos mesmos diâmetros que os parafusos comuns com porca, sendo a principal diferença entre eles a forma de fixação no bloco da ligação. Enquanto nos comuns esta fixação é feita pela porca, nos auto-atarraxantes ocorre pela própria parte rosqueada do parafuso que ancora no bloco da ligação.

Conforme a figura 4.1, estes parafusos são constituídos por quatro partes:
- a cabeça com formato sextavado;
- o fuste com diâmetro constante e sem rosca;
- a rosca com passo largo;
- e a ponta cônica.

![Fig. 4.1. Parafuso auto-atarraxante](image)

Normalmente são fabricados com aço de baixo carbono, para serem instalados em peças de madeira com furação pré-elaborada.

4.1- Ligações com Parafusos Auto-Atarraxantes

As ligações com parafusos auto-atarraxantes, entre peças de madeira ou entre peças de madeira e peças metálicas, são, geralmente, utilizadas devido a sua conveniência, sobretudo, em locais onde a fixação de parafusos comuns com porcas e arruelas é difícil ou inadequada.

Estas ligações normalmente se caracterizam pela presença de dois membros, um principal, sempre de madeira (bloco), onde
penetra a ponta e a parte rosqueada do parafuso e outro secundário (cobrejunta), fixado ao bloco pelo ou pelos parafusos, figura 4.2. A cobrejunta poderá ser de madeira ou metálica.

Fig. 4.2. Ligação com parafuso auto-atarraxante

A colocação de parafusos auto-atarraxantes requer um furo guia, com diâmetro igual ao do fuste para o comprimento do fuste e diâmetro levemente inferior ao da raiz da rosca, para o comprimento rosqueado do parafuso. Os parafusos auto-atarraxantes devem ser instalados por torção, com ferramentas adequadas e auxílio de lubrificantes e nunca por cravação com martelo. Entre a cabeça do parafuso e a cobrejunta, quando de madeira, devem ser usadas arruelas.

Os aspectos principais do uso e ação dos parafusos auto-atarraxantes são: a resistência ao arrancamento direto; a resistência ao deslocamento lateral; e todas as recomendações quanto aos detalhes de instalação e uso dos mesmos.

4.2- NEWLIN e GAHAGAN (1938)

NEWLIN e GAHAGAN (1938) apresentam um trabalho pioneiro acerca de ligações com parafusos auto-atarraxantes, onde divulgam
os resultados e conclusões, bem como, os procedimentos utilizados na execução de um grande número de testes, feitos para o "Forest Products Laboratory - USA".

Os resultados e conclusões são baseados em ensaios de ligações entre peças de madeira de mesma espécie, através de parafusos auto-atarraxantes, os quais apresentaram um limite de escoamento médio de 45Ksi (310MPa) e uma resistência à tração média de 77Ksi (531MPa).

4.2.1- Resistência ao arrancamento direto

O diâmetro do furo guia para a parte rosqueada do parafuso, o comprimento de penetração do parafuso, a densidade da madeira e o diâmetro do parafuso são fatores que influem na resistência ao arrancamento direto e foram analisados por Newlin e Gahagan.

O diâmetro "ótimo" do furo guia para a parte rosqueada do parafuso auto-atarraxante mostrou-se relacionado ao diâmetro do parafuso, porém sem guardar uma relação constante, nem um valor fixo. Para cada madeira pesquisada, foram estabelecidos limites para este diâmetro "ótimo" em relação ao diâmetro do fuste do parafuso, sendo recomendado usar os limites superiores, com parafusos de maior diâmetro e os limites inferiores, com parafusos de menor diâmetro.

A penetração do parafuso auto-atarraxante no membro da ligaçao, que recebe a ponta, isto é, o comprimento de fixação da porção rosqueada do parafuso, apresentou-se influindo na resistência ao arrancamento direto de forma linear, para qualquer diâmetro e qualquer tipo de madeira, justificando, portanto, a fixação dos valores de resistência ao arrancamento direto, em valores correspondentes a uma unidade de comprimento de penetração (valores unitários).

Dentre as propriedades que caracterizam a madeira, a densidade se mostrou como o melhor critério para avaliar a influência da qualidade da madeira, na resistência ao arrancamento direto de parafusos auto-atarraxantes. Esta resistência varia, aproximadamente, com a potência 3/2 da densidade da madeira, com base em peso e volume secos em estufa.

A potência 3/4 definiu a melhor relação entre o arrancamento direto e o diâmetro dos parafusos auto-atarraxantes.
Assim, a influência combinada do diâmetro do parafuso e densidade da madeira podem ser expressas pela fórmula:

\[ F_{sak} = k \cdot \delta_g^{3/4} \cdot \rho_w^{3/2} \]

onde, \( F_{sak} \) representa a carga de arrancamento direto de um parafuso auto-atarrazante, instalado na face lateral de um bloco de madeira, perpendicularmente às suas fibras, em libras por polegada de penetração; \( k \) representa uma constante, a qual, para as espécies testadas, foi determinada igual a 7500; \( \delta_g \) representa o diâmetro do fuste do parafuso auto-atarrazante, em polegadas; e \( \rho_w \) a densidade da madeira, baseada em peso e volume secos em estufa.

Logo, a resistência ao arrancamento direto de parafusos auto-atarrazantes, instalados em blocos de madeira, varia acerca da potência 3/4 do diâmetro do fuste do parafuso, da potência 3/2 da densidade da madeira e diretamente com o comprimento de fixação da porção rosqueada. Um comprimento maior do que 7 vezes o diâmetro do fuste do parafuso em madeiras duras e 10 a 12 vezes em madeiras macias, deve desenvolver uma resistência aproximada à resistência do parafuso à tração.

Um quinto desta carga é recomendada ser a carga de projeto: \( F_{sad} = F_{sak}/5 \).

A resistência ao arrancamento direto de parafusos auto-atarrazantes instalados na superfície de topo de um bloco de madeira, paralelamente às suas fibras, foi determinada variar em torno de três quartos de resistência ao arrancamento direto de um corneto pendente parafuso, cravado na superfície lateral deste bloco.

Os valores assim obtidos, são válidos para parafusos com tensão de ruptura à tração de 77Ksi (531MPa). Para outros parafusos, estes valores deverão ser ajustados na proporção entre as tensões de ruptura.

4.2.2- Resistência ao deslocamento lateral

Com referência a solicitação ao deslocamento lateral Newlin e Cahagan admitem terem os parafusos auto-atarrazantes comportamento muito semelhante aos parafusos comuns com porca. Assim, ressalvadas as diferenças básicas, torna-se possível correlacionar os intensivos estudos existentes para parafusos comuns com os
parafusos auto-atarraxantes.

A qualidade da madeira, o diâmetro do parafuso, a espessura da cobrejunta, a penetração do parafuso no bloco, a penetração do fuste do parafuso no bloco, dentre outros, são fatores que influem, tendo sido analisados no que Newlin e Gahagan definiram como "carga limite proporcional" da ligação, em relação ao deslocamento lateral. Este termo "limite proporcional", refere-se ao ponto da curva tensão-deslocamento, onde as cargas e seus respectivos deslocamentos deixam de ser proporcionais. Para os parafusos auto-atarraxantes, isto não é um limite elástico verdadeiro, devido aos deslocamentos não retornarem o zero, quando as cargas são removidas.

Os testes realizados foram sempre com carregamento paralelo às fibras da cobrejunta e do bloco.

Inicialmente a carga limite proporcional foi determinada variar com a raiz quadrada da resistência à compressão da madeira, ao longo das fibras e com a potência três quartos da densidade. Isto conduziu à classificação das diversas espécies de madeira em quatro grupos, conforme o quadro 1 do Anexo 1, dentro dos quais estas variações são pequenas e portanto suscetíveis de serem desprezadas.

A carga limite proporcional é função do quadrado do diâmetro do fuste do parafuso, portanto, dentro de cada grupo foi possível estabelecer uma expressão do tipo:

\[ F_{slk} = k \cdot \delta_s^2 \]

onde, \( F_{slk} \) representa a carga limite proporcional, em libras; \( k \) uma constante para cada grupo; e \( \delta_s \) o diâmetro do fuste do parafuso, em polegadas.

A carga de projeto de um parafuso auto-atarraxante instalado em madeira seca, com carregamento paralelo às fibras da madeira, pode ser obtida a partir da expressão anterior onde, \( F_{slk} \) vem a ser \( F_{sl} \) e \( k \) vem a ser \( k_d \).

\[ F_{sl} = k_d \cdot \delta_s^2 \]

Os valores de \( k_d \), encontram-se no quadro 1 do Anexo 1 e foram obtidos dos valores \( k \) derivados dos testes e corrigidos com um fator de segurança 2.25.
Esta resistência ao deslocamento lateral de parafusos auto-atarrazantes, carregados paralelamente às fibras da madeira, também foi determinada variar com a raiz quadrada do limite de escoamento do metal do parafuso. Os valores de $k_d$, apresentados no quadro 1 do Anexo 1, são válidos para o limite de escoamento de 45Ksi (310MPa).

A espessura da cobrejunta indicou influir na carga limite proporcional, em função da relação entre sua espessura e o diâmetro do fuste do parafuso, conforme figura 1 do Anexo 1. Um decíduo aumento na carga ocorre com o aumento na relação cobrejunta/parafuso, até cerca de 7 para 1; abaixo de 3,5 para 1, as cargas comportaram-se de forma irregular. A relação 3,5 para 1 aparece como sendo a melhor proporção prática.

Com a relação cobrejunta/parafuso de 3,5 para 1 e diferentes diâmetros do parafuso, será necessário um comprimento de penetração no membro principal da ligação de 7 vezes o diâmetro do parafuso para espécies de madeira duras e cerca de 11 a 12 vezes, para espécies de madeira macias, visando a desenvolver total resistência da ligação. Maiores relações cobrejunta/parafuso requerem maior comprimento de penetração do parafuso, para menores relações, o comprimento de penetração pode ser reduzido. A carga limite proporcional não é afetada, até o comprimento de penetração ser menor que 5 vezes o diâmetro do parafuso.

A penetração do fuste do parafuso no bloco principal afeta o comportamento da ligação frente à condição considerada zero de penetração, isto é, condição, onde o fuste do parafuso atravessa completamente a cobrejunta, porém não chega a penetrar no bloco principal. A figura 2 do Anexo 1, mostra a variação da carga limite proporcional, com este fator.

Para penetrações do fuste de cerca de 7 vezes o diâmetro do parafuso auto-atarrazante, este passa a se comportar como um parafuso comum com porca e maiores penetrações do fuste não mais afetam a carga limite proporcional. Quando o fuste do parafuso não atingir o bloco da ligação, isto é, a espessura da cobrejunta for maior que o comprimento da parte não rosqueada do parafuso, a carga limite proporcional obtida com zero de penetração, deve ser reduzida em 20%.

A utilização de cobrejuntas metálicas aumenta em 25% a carga limite proporcional das ligações, com relação a cobrejuntas
de madeira.

Outros fatores influentes na resistência das ligações com parafusos auto-atarraxantes, tais como: tipos de carga, condições da madeira, ângulo da carga com as fibras da madeira, espaçamentos mínimos e grupos de parafusos, embora controlados, não foram objetivos dos testes realizados por Newlin e Gahagan.

4.3- NATIONAL FOREST PRODUCTS ASSOCIATION - NFPA (1977)


Pelo texto e referências destas especificações, pode-se observar que, entre outros, elas se baseiam no estudo de Newlin e Gahagan (1938); desta forma, suas recomendações seguem os resultados e conclusões expostos no item 4.2.

São apresentados valores de projeto e recomendações para parafusos auto-atarraxantes ou em arrancamento direto ou em resistência lateral, devido ao corte simples de uma ligação de dois membros. Valores estes, válidos para condições normais de carregamento, quando os parafusos são instalados em madeira seca ao ar que permanecerá seca em serviço. Para quaisquer modificações nestas condições, os valores deverão ser ajustados.

Também, estas recomendações e valores de projeto, são válidos para parafusos auto-atarraxantes fabricados com material, seguindo a ASTM-A307 (1980).

Quanto a parafusos de outros metais, os valores de projeto para resistência lateral devem ser ajustados, na proporção da raiz quadrada dos respectivos limites de escoamento.

De forma semelhante ao que foi feito por Newlin e Gahagan (1938), as diferentes espécies de madeira são caracterizadas pela densidade, para fins de análise, quanto ao arrancamento direto e classificadas em quatro grupos diferentes, conforme o quadro 2 do Anexo 1, para fins de análise quanto à resistência lateral. O quadro 2 também apresenta a densidade das diversas espécies de madeira, baseados em peso e volume secos em estufa.

Para o furo guia, as recomendações são as mesmas de Newlin e Gahagan (1938). A parte rosqueada do parafuso deve ter um
furo guia entre os limites de 65 a 85% do diâmetro do fuste do parafuso, para espécies do grupo I, 60 a 75% para espécies do grupo II e 40 a 70%, para espécies do grupo III e IV.

4.3.1- Resistência ao arrancamento direto

Na determinação da resistência ao arrancamento direto, a tensão admissível à tração do parafuso auto-atarraxante para a seção útil da rosca não deve ser excedida. O método ASTM - A 307 (1980) fixa este valor, para aços de baixo carbono, em 22Ksi (152MPa). Para atingir este limite, a penetração da porção rosqueada do parafuso na madeira deverá ser de 7 diâmetros, para espécies do grupo I, 8 diâmetros, para espécies do grupo II, 10 diâmetros, para espécies do grupo III e 11 diâmetros, para espécies do grupo IV.

O quadro 3 do Anexo 1 reproduz a tabela da NFPA onde são apresentados os valores de projeto para arrancamento direto da lateral de blocos de madeira, com os parafusos cravados perpendicularly às fibras deste bloco.

Não é recomendado o uso de parafusos auto-atarraxantes na face de topo dos blocos de madeira. Porém, quando isto não puder ser evitado, o valor de projeto para esta solicitação não deverá ser maior do que três quartos do valor correspondente ao arrancamento direto da face lateral.

4.3.2- Resistência ao deslocamento lateral

Os quadros 4 e 5 do anexo 1 reproduzem as tabelas da NFPA onde são apresentados os valores de projeto para parafusos auto-atarraxantes, cravados na lateral do bloco de ligações, com cobrejuntas de madeira e metálicas, respectivamente. Apresentam-se valores, tanto para a condição de carregamento paralelo, como perpendicular às fibras dos blocos.

Os valores para cobrejuntas metálicas são válidos para a espessura de meia polegada (12,7mm). Para outras espessuras, devem ser corrigidos na proporção da menor ou maior penetração do parafuso, na peça de madeira.

Para carregamentos inclinados, em relação às fibras da madeira, é recomendada a utilização da fórmula de Hankinson.

O valor de projeto para resistência lateral, quando a
cravação do parafuso é na face de topo da peça de madeira, deve ser igual a dois terços do valor da resistência lateral deste mesmo parafuso, cravado na superfície lateral e solicitado por esforços perpendiculares às fibras da madeira.

Quando o parafuso auto-atarraxante está sujeito à ação combinada de arrancamento direto e à carga lateral, as ações devem ser analisadas separadamente.

Os valores admissíveis de projeto, tanto para resistência ao arrancamento direto, mostrados no quadro 3 do Anexo 1, como para resistência ao arrancamento lateral, apresentados nos quadros 4 e 5 deste Anexo 1, apresentam-se majorados em relação aos calculados, segundo o estudo de NEWLIN e GAHAGAN (1938), fato este justificado pela melhoria da qualidade dos parafusos especificados pela NFPA, em relação àqueles usados no estudo anterior.


4.4- ABNT-NBR 7190 (1982) - Cálculo e Execução de Estruturas de Madeira


Sobre os esforços admissíveis nas ligações, esta norma recomenda serem estes adotados igual ao menor dos seguintes valores, obtidos em experimentações com corpos de prova de tamanho natural:

I) 50% do limite de proporcionalidade
II) 20% do limite de resistência
III) esforço correspondente ao deslocamento relativo de 1,5mm, entre as peças ligadas.

Admite serem os resultados de ensaios realizados com uma determinada espécie de madeira estendidos a outra, na mesma proporcionalidade daquela existente entre os limites de resistência das duas espécies de madeira na compressão paralelas às fibras.
5- ENSAIOS REALIZADOS

5.1- Caracterização da Madeira Compensada

A inexistência de informações sobre as características elásticas e de resistência da madeira compensada nacional, impôs a necessidade de uma caracterização prévia deste material, a fim de ser possível sua utilização neste estudo.

Os objetivos básicos foram a obtenção da matriz de coeficientes \([\Sigma]\) da relação constitutiva entre tensões e deformações \((\varepsilon = [\Sigma] \sigma)\) e a resistência característica do compensado aos esforços de tração, compressão e flexão. Para isto, como já mencionado, realizou-se ensaios, seguindo a metodologia proposta por Ribiero (1986), (ver item 3.4).

As chapas de madeira compensada utilizadas no estudo são de fabricação das Industrias Madeirit S.A., tendo suas especificações comerciais definidas como: MADEIRIT - FORM - Chapas de 18mm de espessura, compostas por treze lâminas de madeira, dispuestas de forma diferenciada e com colagem fenólica. As lâminas de face são revestidas com "Tego-film", na proporção de 120g/m² e os topos, impermeabilizados com tinta à base de resina fenólica.

Para cada tipo de ensaio realizado, utilizou-se seis corpos de prova, retirados de seis chapas escolhidas, ao acaso, do lote de doze chapas, especialmente, obtidas junto às Indústrias Madeirit S.A., para o estudo dos silos.

5.1.1- Ensaios de tração

a- Material

Foram ensaiados seis corpos de prova com eixo longitudinal, paralelo às fibras de face e seis corpos de prova com eixo longitudinal na direção perpendicular às fibras de face do compensado.

Em quatro destes corpos de prova de cada tipo de ensaio, foram medidos apenas os alongamentos na sua direção longitudinal, através de dois relógios comparadores, precisão de 0,001mm, instalados em cada face, conforme indicado na fig.5.1-a. Nos outros dois corpos de prova, foram medidas, tanto as deformações longitudinais, como as transversais, por meio de quatro extensômetros elétricos.
instalados, dois em cada face, conforme a figura 5.1-b. Os extensômetros empregados são do tipo KL-10-A4, de resistência 119,70hms e fator de resistência 1,91%, fabricados pela KYOWA.

Assim, para determinar o módulo de elasticidade e a resistência característica à tração, em cada tipo de ensaio, foram usados os valores obtidos dos seis corpos de prova, independente do tipo de instrumentação, e, para determinar o coeficiente de Poisson, serviu-se unicamente dos valores dos dois ensaios com extensômetros elétricos.

a) Corpo de prova de tração, instrumentado com relógios comparadores

b) Corpo de prova de tração, instrumentado com extensômetros elétricos

Fig. 5.1. Corpos de prova, utilizados nos ensaios de tração
As dimensões das seções transversais das extremidades do trecho central, base de medida dos alongamentos e deformações, foram obtidas por um paquímetro, com precisão de 0,02mm. Os quadros 1 e 2 do Anexo 2 apresentam um resumo dos valores médios destas medidas.

b- Metodologia

Para realização dos ensaios, foi utilizada uma Máquina Universal de Ensaios - AMSLER, capacidade 250KN, sendo a montagem ilustrada pela figura 5.2.

![Montagem do ensaio de tração](image)

A cada ensaio, foi aplicada uma carga de acomodação ao conjunto da ordem de 20% da carga de ruptura, estimada em ensaio prévio de um corpo de prova testemunho. Logo a seguir, foi executado o ensaio, sendo as leituras dos alongamentos ou deformações obtidas, até a carga limite, e, a cada intervalo regular de carga,
conforme o quadro 5.1.

Para leitura dos extensômetros elétricos, valeu-se de uma caixa comutadora SS-24R-KYOWA e um indicador de deformações SM-60B-KYOWA. Cada extensômetro foi ligado à caixa comutadora, no esquema de 1/2 ponte de Wheatstone, tendo sido efetuada a compen-
sação de temperatura.

<table>
<thead>
<tr>
<th>Direção das fibras de face do corpo de prova</th>
<th>Carga de acomodação</th>
<th>Intervalos de carga</th>
<th>Carga limite de leitura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KN</td>
<td>Kgf</td>
<td>KN</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>3,924</td>
<td>400</td>
<td>0,491</td>
</tr>
<tr>
<td>Transversal</td>
<td>1,962</td>
<td>200</td>
<td>0,196</td>
</tr>
</tbody>
</table>

Quadro 5.1. Intervalos de carga e cargas limites dos ensaios de tração

Os corpos de prova foram submetidos a dois ciclos de car-
regamentos, obedecendo-se, entre ambos, a um período mínimo de recupe-
ração de 15 minutos. Em cada ensaio, ao ser atingida a carga limi-
te de leitura, pela segunda vez, a instrumentação foi retirada e o cor-
po de prova levado à ruptura.

Deste modo, para cada corpo de prova foram obtidas qua-
tro séries de valores para os alongamentos ou deformações (longitu-
dinais e transversais), em função da carga aplicada, duas por face, e um valor para a carga de ruptura.

O carregamento foi aplicado com uma velocidade constante de deslocamento do travessão móvel da máquina, aproximadamente 0,9mm/min, como prescrito pelo método ASTM-D 3500-76 (1982).

c- Resultados

Os quadros 1 e 2 do Anexo 2 sumarizam os valores médios destes alongamentos e deformações, bem como, a carga de ruptura pa-
ra cada ensaio.

Para efeito da determinação do módulo de elasticidade, as deformações específicas longitudinais dos corpos de prova, instru-
mentados com extensômetros elétricos, foram transformadas em alon-
gamentos para uma base de medida de 10cm, igual a dos corpos de
prova instrumentados com relógios comparadores.

Desta forma, o módulo de elasticidade para cada corpo de prova pôde ser obtido, independentemente do tipo de instrumentação, a partir da regressão linear (ver item 3.4.1), entre os alongamentos médios (Δl) e os valores da força normal aplicada (N).

A análise de regressão mostrou, em todos os casos, um comportamento fortemente linear entre Δl e N, sendo a reta de regressão representada por: Δl = a + bN, onde, "b" é o termo de interseção que foi desprezado e "a" o coeficiente angular da reta, que expressa a relação entre Δl e N.

- regressão: \[
\frac{N}{\Delta l} = \frac{1}{b} \\
E_{pt} = \frac{1}{b \cdot A}
\]

onde, A é a seção transversal média do trecho central do corpo de prova, dada nos quadros 1 e 2 do Anexo 1; e a base de medida l = 10cm.

O quadro 5.2 apresenta os módulos de elasticidade à tração de todos os corpos de prova ensaiados, bem como, o valor médio e o desvio padrão, tanto para a condição de fibras de face longitudinal, como transversais.

<table>
<thead>
<tr>
<th>DIREÇÃO DAS FIBRAS DE FACE</th>
<th>Longitudinal</th>
<th>Transversal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L/B (KN/m x10^2)</td>
<td>E_{pt} (MPa)</td>
</tr>
<tr>
<td>Corpo de Prova</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1-L</td>
<td>44,390</td>
<td>9339,92</td>
</tr>
<tr>
<td>T2-L</td>
<td>42,980</td>
<td>9082,19</td>
</tr>
<tr>
<td>T3-L</td>
<td>36,303</td>
<td>7835,10</td>
</tr>
<tr>
<td>T4-L</td>
<td>43,902</td>
<td>9287,28</td>
</tr>
<tr>
<td>T5-L</td>
<td>41,304</td>
<td>8994,49</td>
</tr>
<tr>
<td>T6-L</td>
<td>39,554</td>
<td>8637,50</td>
</tr>
<tr>
<td>Média-MPa</td>
<td>8961,12</td>
<td></td>
</tr>
<tr>
<td>Desvio Padrão - MPa</td>
<td>639,25</td>
<td></td>
</tr>
</tbody>
</table>

Quadro 5.2 – Módulo de elasticidade à tração do compensado.
A resistência à tração foi determinada, independentemente da instrumentação utilizada, dividindo a força normal de ruptura pela área média da seção transversal do corpo de prova no rebaixo (ver item 3.4.1):

\[
\sigma_{ptk} = \frac{N_u}{A}
\]

No quadro 5.3, são apresentados estes valores para todos os corpos de prova ensaiados, bem como, o valor médio e o desvio padrão, tanto para a condição de fibras de face longitudinal como transversal.

<table>
<thead>
<tr>
<th>DIREÇÃO DAS FIBRAS DE FACE</th>
<th>Longitudinal</th>
<th>Transversal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corpo de Prova</td>
<td>A (10^{-4} m^2)</td>
<td>N_u (KN)</td>
</tr>
<tr>
<td>T1-L</td>
<td>4,666</td>
<td>21,53</td>
</tr>
<tr>
<td>T2-L</td>
<td>4,732</td>
<td>18,05</td>
</tr>
<tr>
<td>T3-L</td>
<td>4,378</td>
<td>18,05</td>
</tr>
<tr>
<td>T4-L</td>
<td>4,736</td>
<td>17,85</td>
</tr>
<tr>
<td>T5-L</td>
<td>4,597</td>
<td>22,17</td>
</tr>
<tr>
<td>T6-L</td>
<td>4,579</td>
<td>25,11</td>
</tr>
<tr>
<td>Média - MPa</td>
<td>44,73</td>
<td></td>
</tr>
<tr>
<td>Desvio Padrão - MPa</td>
<td>6,21</td>
<td></td>
</tr>
</tbody>
</table>

Quadro 5.3. Resistência à tração do compensado

Para determinar o coeficiente de Poisson, utilizou-se somente os corpos de prova instrumentados com extensômetros elétricos, onde foram obtidas as deformações transversais e longitudinais, em função do carregamento aplicado.

Para isto, efetuou-se as regressões lineares entre estas deformações e o carregamento aplicado (ver item 3.4.1), relacionando-se logo após, as deformações transversais com as longitudinais:

\[
\nu = -\frac{\varepsilon_N}{\varepsilon_L}
\]

A análise de regressão, em todos os casos, mostrou um comportamento fortemente linear entre \(\varepsilon\) e \(N\), sendo a reta da regressão
representada por:

\[ \varepsilon_T = \varepsilon_T + b_T N \rightarrow \text{def. transversal} \]

\[ \varepsilon_L = \varepsilon_L + b_L N \rightarrow \text{def. longitudinal} \]

onde, "\( \varepsilon_T \)" e "\( \varepsilon_L \)" são os termos de intersecção que foram desprezados e "\( b_T \)" e "\( b_L \)" os coeficientes angulares das retas, que expressam a relação entre \( \varepsilon \) e \( N \), na direção transversal e longitudinal, respectivamente.

- regressão: \( \frac{\varepsilon_T}{N} = b_T \); \( \frac{\varepsilon_L}{N} = b_L \)

\[ \nu = - \frac{b_T}{b_L} \]

- item 4.4.1: \( \nu = - \left( \frac{\varepsilon_T}{\varepsilon_L} \right) \)

O quadro 5.4 apresenta os coeficientes de Poisson para os corpos de prova ensaiados com extensômetros elétricos, bem como, o valor médio, tanto para a condição de fibras de face longitudinal, como transversal.

<table>
<thead>
<tr>
<th></th>
<th>DIREÇÃO DAS FIBRAS DE FACE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longitudinal</td>
</tr>
<tr>
<td></td>
<td>Corpo de Prova</td>
</tr>
<tr>
<td></td>
<td>KN(^{-1})</td>
</tr>
<tr>
<td>T1-L</td>
<td>-0,0125</td>
</tr>
<tr>
<td>T2-L</td>
<td>-0,0230</td>
</tr>
<tr>
<td>Média + ( \nu_{xy} )</td>
<td>0,078</td>
</tr>
</tbody>
</table>

Quadro 5.4. Coeficiente de Poisson do compensado

Na figura 5.3, registram-se alguns corpos de prova rompidos por tração, com a ruptura típica ocorrida em todos os ensaios.
Fig 5.3. Corpos de prova rompidos por tração

5.1.2- Ensaio de compressão

a- Material

Furam ensaiados seis corpos de prova com eixo longitudinal paralelo às fibras de face e seis corpos de prova com eixo longitudinal, na direção perpendicular às fibras de face do compensado.

Os corpos de prova foram obtidos colando três peças de dimensões (1,8x5,0x20)cm³, conforme mostra a figura 5.4, utilizando-se adesivo à base de PVA.

Fig. 5.4. Corpo de prova de compressão
Este corpo de prova tem dimensões equivalentes às do corpo de prova, para compressão paralela às fibras em madeira maciça do método ASTM-D143-52 (1982), tendo sido sugerido por LEE e BIBLIS (1980).

As medidas de encurtamento foram efetuadas sobre o trecho central do corpo de prova \( l = 10\text{cm} \), através de dois relógios comparadores Mitutoyo de 1mm de curso e precisão de 0,001mm, colocados um em cada face, paralelos ao plano das lâminas, figura 5.4.

As dimensões das seções transversais das extremidades do trecho central, base de medida dos encurtamentos, foram obtidas por um paquímetro, com precisão de 0,02 mm. Os quadros 3 e 4 do Anexo 2 apresentam um resumo dos valores médios destas medidas.

b- Metodologia

Para realização dos ensaios utilizou-se uma Máquina Universal de Ensaio - AMSLER, capacidade 250KN, sendo a montagem ilustrada pela figura 5.5. A fim de evitar desvios na aplicação da carga, na parte superior, entre o corpo de prova e a máquina, empregou-se uma conexão articulada.

Fig. 5.5. Montagem do ensaio de compressão

A cada ensaio, foi aplicada uma carga de acomodação ao conjunto da ordem de 20% da carga de ruptura, estimada em ensaio prévio de um corpo de prova testemunho. Logo a seguir, foi executado
o ensaio, obtendo-se as leituras dos encurtamentos, até a carga limite de leitura e a cada intervalo regular de carga, conforme o quadro 5.5.

<table>
<thead>
<tr>
<th>ENSAIO DE COMpressão</th>
<th>PROGRAMAÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direção das fibras de face do corpo de prova</td>
<td>Carga de acomodação</td>
</tr>
<tr>
<td></td>
<td>KN</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>14,715</td>
</tr>
<tr>
<td>Transversal</td>
<td>14,715</td>
</tr>
</tbody>
</table>

Quadro 5.5. Intervalo de carga e cargas limites dos ensaios de compressão

Os corpos de prova foram submetidos a dois ciclos de carregamentos, obedecendo-se, entre ambos, a um período mínimo de recuperação de 15 minutos. Em cada ensaio, ao ser atingida a carga limite de leitura, pela segunda vez, os relógios foram retirados e o corpo de prova levado à ruptura.

Assim, para cada corpo de prova foram obtidas quatro séries de valores para os encurtamentos, em função da carga aplicada, duas por face, e um valor para a carga de ruptura.

Aplicou-se o carregamento com uma velocidade constante de deslocamento do travessão móvel da máquina, aproximadamente 0,9mm/min.

C - Resultados

Os quadros 3 e 4 do Anexo 2 sumarizam os valores médios destes encurtamentos, bem como, a carga de ruptura para cada ensaio.

O módulo de elasticidade para cada corpo de prova pode ser obtido, a partir da regressão linear (ver item 3.4.2) entre os encurtamentos médios (ΔL) e os valores da força normal aplicada (N).

A análise de regressão mostrou, em todos os casos, um comportamento fortemente linear entre ΔL e N, sendo a reta de regressão representada por: ΔL = a + bN, onde "a" é o termo de interseção que foi desprezado e "b" o coeficiente angular da reta, que expressa a relação entre ΔL e N.
- regressão: \[ \frac{N}{\Delta l} = \frac{1}{b} \]

\[ E_{pc} = - \frac{1}{b \cdot A} \]

- item 4.4.2: \[ E_{pc} = - \left( \frac{N}{\Delta l} \right) \left( \frac{1}{A} \right) \]

onde, \( A \) é a seção transversal média do trecho central do corpo de prova dada nos quadros 3 e 4 do Anexo 2; e a base de medida \( b = 10 \text{cm} \).

O quadro 5.6 apresenta os módulos de elasticidade à compressão de todos os corpos de prova ensaiados, como também, o valor médio e o desvio padrão, tanto para a condição de fibras de face longitudinal, como transversais.

<table>
<thead>
<tr>
<th>DIREÇÃO DAS FIBRAS DE FACE</th>
<th>Longitudinal</th>
<th>Transversal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corpo de Prova</td>
<td>( \frac{l}{b} )</td>
<td>( G_{pc} )</td>
</tr>
<tr>
<td>C1-L</td>
<td>-145,73</td>
<td>9330,47</td>
</tr>
<tr>
<td>C2-L</td>
<td>-169,54</td>
<td>6282,87</td>
</tr>
<tr>
<td>C3-L</td>
<td>-240,87</td>
<td>8669,48</td>
</tr>
<tr>
<td>C4-L</td>
<td>-239,57</td>
<td>8806,16</td>
</tr>
<tr>
<td>C5-L</td>
<td>-247,32</td>
<td>9215,28</td>
</tr>
<tr>
<td>C6-L</td>
<td>-219,72</td>
<td>8168,54</td>
</tr>
<tr>
<td>Média - MPa</td>
<td>8378,20</td>
<td>Média - MPa</td>
</tr>
<tr>
<td>Desvio Padrão - MPa</td>
<td>997,52</td>
<td>Desvio Padrão - MPa</td>
</tr>
</tbody>
</table>

Quadro 5.6. Módulo de elasticidade à compressão do compensado.

A resistência à compressão foi determinada, dividindo a força normal de ruptura, pela área média da seção transversal do corpo de prova (ver item 3.4.2).

\[ f_{pck} = \frac{N_{u}}{A} \]

No quadro 5.7, são expostos estes valores para todos os corpos de prova ensaiados, bem como, o valor médio e o desvio padrão, tanto para a condição de fibras de face longitudinal, como transversal.
DIREÇÃO DAS FIBRAS DE FACE

<table>
<thead>
<tr>
<th></th>
<th>Longitudinal</th>
<th>Transversal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$A \times 10^{-4} m^2$</td>
<td>$N_u$</td>
</tr>
<tr>
<td>Corpus de Prova</td>
<td></td>
<td>KN</td>
</tr>
<tr>
<td>CL-L</td>
<td>26,366</td>
<td>87,80</td>
</tr>
<tr>
<td>C2-L</td>
<td>26,986</td>
<td>77,00</td>
</tr>
<tr>
<td>C3-L</td>
<td>27,784</td>
<td>80,44</td>
</tr>
<tr>
<td>C4-L</td>
<td>27,206</td>
<td>104,30</td>
</tr>
<tr>
<td>C5-L</td>
<td>26,838</td>
<td>89,27</td>
</tr>
<tr>
<td>C6-L</td>
<td>26,909</td>
<td>87,31</td>
</tr>
<tr>
<td>Média - MPa</td>
<td>32,51</td>
<td></td>
</tr>
<tr>
<td>Desvio Padrão - MPa</td>
<td>3,33</td>
<td></td>
</tr>
</tbody>
</table>

Quadro 5.7. Resistência à compressão do compensado

A figura 5.6. mostra alguns corpos de prova rompidos por compressão, com a ruptura típica ocorrida em todos os ensaios.

Fig. 5.6. Corpos de prova rompidos por compressão
5.1.3- Ensaios de flexão

a - Material

Foram ensaiados à flexão, seis corpos de prova com eixo longitudinal, na direção \( \chi \) (direção paralela à direção das fibras da laminha de face) e seis com eixo longitudinal, na direção \( \gamma \) (direção perpendicular à direção das fibras da laminha de face) do compensado.

As dimensões adotadas para o corpo de prova seguiram as prescrições do método ASTM-D3043-76 (1982), conforme a figura 5.7-a. Os deslocamentos verticais, de seu ponto central, foram obtidos através de um relógio comparador com precisão 0,01mm, conforme ilustra a figura 5.7-b.

\[ \xi (\text{apoio}) \]

\[ \xi (\text{apoio}) \]

\[ \text{DIM(cm)} \]

* \( l = 90\text{cm} \) - corpo de prova com fibras de face longitudinais

* \( l = 45\text{cm} \) - corpo de prova com fibras de face transversais

a) Corpo de prova

b) Esquema de ensaio

Fig. 5.7. Corpo de prova do ensaio de flexão.
As dimensões da seção transversal central do corpo de prova, posição de referência para obtenção dos deslocamentos verticais, foram realizadas com um paquímetro de precisão 0,02mm. Os quadros 5 e 6 do Anexo 2 apresentam um resumo dos valores médios destas medidas.

b- Metodologia

Os corpos de prova foram fletidos pela ação de uma carga centrada F, aplicada através de uma unidade de ensaio VICKERS composta por um cilindro hidráulico de capacidade 20KN, um anel dinamométrico E.L.E de capacidade 4KN, uma estrutura auxiliar de fixação do cilindro e um painel de comando, conforme mostra a fig. 5.8.

Os apoios utilizados constam de roletes de aço simulando apoios articulados móveis de cada lado do corpo de prova. Para aplicação da carga, empregou-se um cutelo com extremidade arredondada com raio de curvatura de, aproximadamente, 30mm (1,5 vezes a espessura do corpo de prova).

![Fig. 5.8. Montagem do ensaio de flexão](image_url)

A cada ensaio, foi aplicada uma carga de acomodação ao conjunto da ordem de 20% da carga de ruptura, estimada em ensaio prévio de um corpo de prova testemunho. Logo a seguir, foi executado o ensaio, sendo as leituras dos deslocamentos verticais obtidas até a carga limite de leitura e a cada intervalo regular de carga, conforme o quadro 5.8.
E N S A I O D E F L E X Ã O - P R O G R A M A Ç Ã O

<table>
<thead>
<tr>
<th>Direção das fibras de face do corpo de prova</th>
<th>Carga de acomodação</th>
<th>Intervalo de carga</th>
<th>Carga limite de leitura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KN</td>
<td>Kgf</td>
<td>KN</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>0,147</td>
<td>15,0</td>
<td>0,0173</td>
</tr>
<tr>
<td>Transversal</td>
<td>0,177</td>
<td>18,0</td>
<td>0,0173</td>
</tr>
</tbody>
</table>

1 - Correspondente a cinco divisões do relógio comparador do anel dinamométrico utilizado no ensaio

Quadro 5.8. Intervalo de carga e cargas limites dos ensaios de flexão

Para cada corpo de prova foram aplicados dois carregamentos, um para cada lado da tira, observando-se entre ambos, um período mínimo de recuperação de 15 minutos. Ao ser atingida a carga limite de leitura pela segunda vez, o relógio comparador foi retirado e o corpo de prova levado à ruptura.

Assim, obteve-se quatro séries de valores para os deslocamentos verticais, em função da carga aplicada, duas por face de cada corpo de prova, e um valor para a carga de ruptura.

A velocidade do carregamento foi mantida em, aproximadamente, 11mm/min, função da recomendação que a velocidade de deformação da fibra extrema do corpo de prova deve manter-se em 0,15%.

c - Resultados

Os quadros 5 e 6 do Anexo 2 sumarizam os valores médios destes deslocamentos verticais, bem como, a carga de ruptura para cada ensaio.

O módulo de elasticidade para cada corpo de prova, foi obtido a partir da regressão linear (ver item 3.4.3) entre os deslocamentos verticais médios (ω) e os valores da força concentrada aplicada (F).

A análise de regressão mostrou em todos os casos, um comportamento fortemente linear entre ω e F, sendo a reta de regressão representada por: ω=a+bF, onde, "a" é o termo de intersecção
desprezado e "b" o coeficiente angular da reta que expressa a relação entre \( \omega \) e \( F \).

- regressão: \( \frac{F}{\omega} = \frac{1}{b} \)

\[ E_{pf} = \frac{l^3}{48bl} \]

- item 4.4.3: \( E_{pf} = \left( \frac{F}{\omega} \right) \left( \frac{l^3}{48l} \right) \)

onde "I" é o momento de inércia do corpo de prova em sua seção central; e "l" é o vão entre apoios do corpo de prova.

O quadro 5.9 apresenta os módulos de elasticidade à flexão de todos os corpos de prova ensaiados, assim como, o valor médio e o desvio padrão, tanto para a condição de fibras de face longitudinal, como transversais.

<table>
<thead>
<tr>
<th>DIREÇÃO DAS FIBRAS DE FACE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>F1-L</td>
</tr>
<tr>
<td>F2-L</td>
</tr>
<tr>
<td>F3-L</td>
</tr>
<tr>
<td>F4-L</td>
</tr>
<tr>
<td>F5-L</td>
</tr>
<tr>
<td>F6-L</td>
</tr>
<tr>
<td>Média - MPa</td>
</tr>
<tr>
<td>Desvio Padrão - MPa</td>
</tr>
</tbody>
</table>

Quadro 5.9. Módulo de elasticidade à flexão do compensado

A resistência à flexão foi determinada a partir da expressão tradicional da tensão de flexão (ver item 3.4.3).

\[ E_{pfk} = \frac{F_u \cdot l}{4W} \]
No quadro 5.10, são apresentados estes valores para todos os corpos de prova ensaiados à flexão, bem como, o valor médio e o desvio padrão, tanto para a condição de fibras de face longitudinais como transversais.

<table>
<thead>
<tr>
<th>Corpo de Prova</th>
<th>W (x10^-3m³)</th>
<th>F₀ (KN)</th>
<th>f₀ (MPa)</th>
<th>Corpo de Prova</th>
<th>W (x10^-3m³)</th>
<th>F₀ (KN)</th>
<th>f₀ (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1-L</td>
<td>2.670</td>
<td>0.789</td>
<td>64.79</td>
<td>P1-T</td>
<td>2.607</td>
<td>1.091</td>
<td>47.08</td>
</tr>
<tr>
<td>P2-L</td>
<td>2.599</td>
<td>0.588</td>
<td>50.67</td>
<td>P2-T</td>
<td>2.548</td>
<td>0.551</td>
<td>24.32</td>
</tr>
<tr>
<td>P3-L</td>
<td>2.603</td>
<td>0.564</td>
<td>48.79</td>
<td>P3-T</td>
<td>2.594</td>
<td>0.727</td>
<td>31.54</td>
</tr>
<tr>
<td>P4-L</td>
<td>2.789</td>
<td>0.578</td>
<td>46.65</td>
<td>P4-T</td>
<td>2.789</td>
<td>0.571</td>
<td>23.05</td>
</tr>
<tr>
<td>P5-L</td>
<td>2.561</td>
<td>0.928</td>
<td>81.84</td>
<td>P5-T</td>
<td>2.535</td>
<td>0.612</td>
<td>40.58</td>
</tr>
<tr>
<td>P6-L</td>
<td>2.567</td>
<td>0.866</td>
<td>75.87</td>
<td>P6-T</td>
<td>2.462</td>
<td>1.486</td>
<td>67.89</td>
</tr>
<tr>
<td>Média - MPa</td>
<td></td>
<td></td>
<td>61.43</td>
<td>Média - MPa</td>
<td></td>
<td></td>
<td>39.08</td>
</tr>
<tr>
<td>Desvio Padrão - MPa</td>
<td></td>
<td></td>
<td>13.73</td>
<td>Desvio Padrão - MPa</td>
<td></td>
<td></td>
<td>15.43</td>
</tr>
</tbody>
</table>

Quadro 5.10. Resistência à flexão do compensado

5.1.4. Ensaios de torção

a- Material

Os corpos de prova para estes ensaios de torção constituíram-se de placas quadradas de compensado, com as fibras de face paralelas a um dos bordos, conforme ilustra a figura 5.9.

---

**Fig. 5.9.** Corpo de prova de torção
Para possibilitar o apoio e a aplicação do carregamento, em vértices opostos, na parte inferior e superior da placa, respectivamente, foram fixadas pequenas peças metálicas com rebaixo central, para alojamento de esferas de aço de diâmetro 11mm.

As espessuras dos quatro cantos da placa compensada foram obtidas com um paquímetro de precisão 0,02mm. O quadro 7 do Anexo 2 apresenta os valores médios destas medidas.

b- Metodologia

As placas de compensado, apoiadas em dois de seus vértices opostos, foram submetidas à torção, mediante a aplicação de uma carga $F$, dividida entre os outros dois vértices, através de uma unidade de ensaios VICKERS composta por um cilindro hidráulico, capacidade 20KN, um anel dinamométrico E.L.E. de capacidade 4KN, uma estrutura auxiliar de fixação do cilindro e um painel de comando, conforme mostra a figura 5.10.

Fig. 5.10. Montagem do ensaio de torção

Com o objetivo de se evitarem desvios na aplicação central da carga, na parte superior, entre o travessão de distribuição do carregamento e o anel dinamométrico, foi utilizada uma conexão articulada, conforme mostra a figura 5.11.
Fig. 5.11. Detalhe da montagem do ensaio de torção

A transmissão do carregamento às placas deu-se por meio de esferas de aço de 11mm de diâmetro, perfeitamente ajustadas entre o travessão regulável e as peças metálicas, fixadas sobre a placa compensada como mostra a figura 5.9. O apoio da placa também foi feito através de esferas de aço, de forma semelhante à descrita acima, para o carregamento.

A determinação dos deslocamentos verticais do ponto central da placa, foi efetuada através de um relógio comparador, precisão 0,001mm, instalado, conforme mostra a figura 5.11. Para checar o ensaio, também foram registrados os deslocamentos verticais dos vértices carregados da placa, com relógios comparadores de precisão 0,01mm (ver item 3.4.4).

A cada ensaio, foi aplicada uma carga de acomodação ao conjunto da ordem de 50% da carga limite de leitura, estimada em ensaio prévio de um corpo de prova testemunho, em função do deslocamento vertical máximo, na extremidade carregada da placa, limitado em 0/10, conforme sugestão de HEARMON e ADAMS (1952). Logo após, foi executado o ensaio, sendo as leituras dos deslocamentos verticais, tanto na posição central, como nos vértices da placa, obtidos até a carga limite de leitura e a cada intervalo regular de carga, como registra o quadro 5.11.
### ENSAIO DE TORÇÃO – PROGRAMAÇÃO

<table>
<thead>
<tr>
<th>Carga de acomodação</th>
<th>Intervalo de carga</th>
<th>Carga limite de leitura</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Kgf</td>
<td>N</td>
</tr>
<tr>
<td>39,240</td>
<td>4,0</td>
<td>3,463</td>
</tr>
</tbody>
</table>

1- Correspondente a uma divisão do relógio comparador do anel dinamométrico, usado no ensaio.

**Quadro 5.11.** Intervalo de carga e carga limite nos ensaios de torção

Para cada corpo de prova foram aplicados dois carregamentos, um para cada lado da placa, observando-se entre ambos, um período mínimo de recuperação de 15 minutos.

Desta forma, obteve-se duas séries de valores para os deslocamentos verticais do ponto central, em função da carga aplicada, uma por face de cada corpo de prova. Também foram registradas quatro séries de valores, para os deslocamentos verticais dos vértices carregados da placa, duas por vértice, que serviram para checar o ensaio.

A velocidade do carregamento foi mantida em, aproximadamente, 8mm/min, conforme recomendação do método ASTM-D3044-76 (1982).

**c- Resultados**

O quadro 7 do Anexo 2 sumariza os valores médios destes deslocamentos verticais do centro e dos vértices, para cada ensaio realizado.

O módulo de elasticidade transversal $G_{xy}$, para cada corpo de prova foi obtido a partir da regressão linear (ver item 3.4.4) entre os deslocamentos verticais médios do ponto central da placa ($\omega_0$) e os valores da força concentrada aplicada ($F$).

A análise de regressão mostrou, em todos os casos, um comportamento fortemente linear entre $\omega_0$ e $F$, sendo a reta de regressão representada por: $\omega_0 = \hat{a} + \hat{b}F$, onde, "$\hat{a}$" é o termo de interseção desprezado e "$\hat{b}$" o coeficiente angular da reta, que expressa a
relação entre $\omega_0$ e $F$.

- regressão: \[
\frac{F}{\omega_0} = \frac{1}{b}
\]

\[\gamma_{xy} = \frac{3 l^2}{8 b e^3}\]

- item 4.4.4: \[
\gamma_{xy} = \left(\frac{F}{\omega_0}\right) \left(\frac{3}{8}\right) \left(\frac{l^3}{e}\right)
\]

onde, "l" é o vão entre apoios da placa (l = 60cm); e a espessura da placa "e" é dada no quadro 7 do Anexo 2.

O quadro 5.12 apresenta os módulos de elasticidade transversais de todos os corpos de prova, ensaiados à torção, bem como, o valor médio e o desvio padrão.

<table>
<thead>
<tr>
<th>Corpo de Prova</th>
<th>$\varnothing$ em x10^-3</th>
<th>$l/b$ KN/m x10^-3</th>
<th>$\gamma_{xy}$ MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-1</td>
<td>1,786</td>
<td>41,145</td>
<td>975,02</td>
</tr>
<tr>
<td>TO-2</td>
<td>1,775</td>
<td>46,795</td>
<td>1129,62</td>
</tr>
<tr>
<td>TO-3</td>
<td>1,781</td>
<td>44,587</td>
<td>1065,50</td>
</tr>
<tr>
<td>TO-4</td>
<td>1,824</td>
<td>43,550</td>
<td>968,83</td>
</tr>
<tr>
<td>TO-5</td>
<td>1,745</td>
<td>44,986</td>
<td>1142,95</td>
</tr>
<tr>
<td>TO-6</td>
<td>1,749</td>
<td>38,288</td>
<td>966,11</td>
</tr>
<tr>
<td>Média - MPa</td>
<td></td>
<td></td>
<td>1050</td>
</tr>
<tr>
<td>Desvio Padrão- MPa</td>
<td></td>
<td></td>
<td>75</td>
</tr>
</tbody>
</table>

Quadro 5.12. Módulo de elasticidade transversal do com- pensado
5.1.5- Análise dos resultados

As chapas de madeira compensada utilizadas nos ensaios apresentaram-se bastante uniformes quanto aos aspectos de umidade e densidade.

Dos corpos de prova ensaiados à tração e à flexão, foram retiradas duas amostras de cada, para determinações destes parâmetros, estando seus valores médios apresentados nos quadros 8 e 9 do Anexo 2.

Observa-se que a umidade variou em torno da média 7,2%, com desvio padrão de 0,57%, enquanto que a densidade variou em torno de 6,2KN/m³, com desvio padrão de 0,31KN/m³.

Assim, a influência destes fatores nos resultados dos ensaios foi desconsiderada, validando-se os resultados finais para estas condições.

5.1.5.1- Comparação entre os módulos de elasticidade à tração, à compressão e à flexão

Os valores do módulo de elasticidade obtidos dos ensaios de tração, compressão e flexão mostraram-se distribuídos de forma muito semelhante, conforme se pode observar na figura 5.12a, para as determinações na direção paralela às fibras de face e na figura 5.12b, para as determinações na direção normal a estas fibras do compensado.

Para verificar a equivalência entre estes valores, realizou-se uma análise estatística, testando o efeito dos diferentes tipos de ensaios (tratamentos) nos módulos obtidos, tanto para a direção paralela às fibras de face, como para a direção normal a estas fibras do compensado.

O modelo matemático admitido supõe que uma observação \( y_{ti} \) pode ser representada pela soma de uma média geral \( \mu \), um efeito de tratamento \( \delta_t \) e um erro \( \epsilon_{ti} \), ou seja:

\[
y_{ti} = \mu + \delta_t + \epsilon_{ti}
\]

A importância ou não do efeito do tratamento foi verificada, aplicando-se o teste F sobre a hipótese: \( \delta_t = 0 \), admitindo-se um nível de significância máximo de 5%.
a) Módulo de elasticidade paralelo às fibras de face

\[ \text{MÉDIA} = 8761,03 \text{ MPa} \]
\[ \text{MÉDIA} = 8964,2 \text{ MPa} \]
\[ \text{MÉDIA} = 8376,3 \text{ MPa} \]

\[ E_{pf}^x, \ E_{pt}^x, \ E_{pc}^x \]

\[ 4000, 5000, 6000, 7000, 8000, 9000, 10000 \text{ MPa} \]

b) Módulo de elasticidade perpendicular às fibras de face

\[ \text{MÉDIA} = 4996,34 \text{ MPa} \]
\[ \text{MÉDIA} = 5587,83 \text{ MPa} \]
\[ \text{MÉDIA} = 5807,52 \text{ MPa} \]

\[ E_{pf}^y, \ E_{pt}^y, \ E_{pc}^y \]

\[ 4000, 5000, 6000, 7000, 8000, 9000, 10000 \text{ MPa} \]

Fig. 5.12. Valores do módulo de elasticidade do compensado

O quadro 10 do Anexo 2 apresenta o resumo das análises de variância, realizadas para cada condição de disposição das fibras de face do compensado, mostrando não existirem evidências que o tipo de ensaio realizado influencie os resultados obtidos.

Assim, o módulo de elasticidade, tanto na direção paralela às fibras de face do compensado como na direção normal a estas fibras, foi estabelecido igual a média de todas as determinações realizadas, independentemente do tipo de ensaio.
No quadro 5.13 apresenta-se um resumo dos módulos de elasticidade, obtidos nos ensaios, bem como, o valor médio em cada direção e o respectivo desvio padrão.

<table>
<thead>
<tr>
<th>Corpo de Prova</th>
<th>MÓDULO DE ELASTICIDADE - MPa</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TrAÇÃO</td>
<td>Compressão</td>
<td>Flexão</td>
<td>TrAÇÃO</td>
</tr>
<tr>
<td>1</td>
<td>9939,92</td>
<td>9130,47</td>
<td>9203,74</td>
<td>9132,43</td>
</tr>
<tr>
<td>2</td>
<td>9082,19</td>
<td>6282,87</td>
<td>7169,45</td>
<td>4600,78</td>
</tr>
<tr>
<td>3</td>
<td>7835,30</td>
<td>8669,48</td>
<td>9064,52</td>
<td>3827,44</td>
</tr>
<tr>
<td>4</td>
<td>9287,28</td>
<td>8806,16</td>
<td>7593,87</td>
<td>5663,02</td>
</tr>
<tr>
<td>5</td>
<td>8984,49</td>
<td>9215,28</td>
<td>9536,26</td>
<td>5172,92</td>
</tr>
<tr>
<td>6</td>
<td>8637,50</td>
<td>8165,54</td>
<td>9998,37</td>
<td>9130,37</td>
</tr>
<tr>
<td>Média</td>
<td>8961,12</td>
<td>8378,30</td>
<td>8761,03</td>
<td>5587,83</td>
</tr>
</tbody>
</table>

Média Geral: \( \varepsilon_{px} = 8700 \text{ MPa} \) \( \varepsilon_{py} = 5500 \text{ MPa} \)

Desvio Padrão: \( S = 964 \text{ MPa} \) \( S = 1691 \text{ MPa} \)

Quadro 5.13. Módulos de elasticidade do compensado

5.1.5.2- Relação constitutiva entre tensões e deformações para o compensado

Resumindo os resultados encontrados para os parâmetros elásticos do compensado tem-se:

\( \varepsilon_{px} = 8700 \text{ MPa} \)
\( \nu_{xy} = 0,078 \)

\( \varepsilon_{py} = 5500 \text{ MPa} \)
\( \nu_{yx} = 0,046 \)

\( \gamma_{xy} = 1050 \text{ MPa} \)
A partir destes valores foi possível estabelecer a matriz de coeficientes da relação constitutiva entre tensões e deformações, conforme mostrado no item 4.3.

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix} =
\begin{bmatrix}
S_{11} & S_{12} & 0 \\
S_{21} & S_{22} & 0 \\
0 & 0 & S_{66}
\end{bmatrix}
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix}
\]

- \( S_{11} = \frac{1}{E_{px}} \) → \( S_{11} = 114,943 \times 10^{-6} \, \text{MPa}^{-1} \)
- \( S_{22} = \frac{1}{E_{py}} \) → \( S_{22} = 118,818 \times 10^{-6} \, \text{MPa}^{-1} \)
- \( S_{12} = S_{21} = -\nu_{xy}/E_{px} = -\nu_{yx}/E_{py} \) → \( S_{12} = S_{21} = -8,664 \times 10^{-6} \, \text{MPa}^{-1} \)
- \( S_{66} = \frac{1}{G_{xy}} \) → \( S_{66} = 925,381 \times 10^{-6} \, \text{MPa}^{-1} \)

ou ainda,

\[
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix} =
\begin{bmatrix}
114,943 & -8,664 & 0 \\
-8,664 & 181,818 & 0 \\
0 & 0 & 952,381
\end{bmatrix}
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} \, \text{MPa}^{-1}
\]

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} =
\begin{bmatrix}
C_{11} & C_{12} & 0 \\
C_{21} & C_{22} & 0 \\
0 & 0 & C_{66}
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix}
\]
\[ C_{11} = E_{px} \cdot E_{py} / (E_{py} - E_{px}) \cdot (\nu_{xy})^2 \quad \Rightarrow C_{11} = 8730 \text{ MPa} \]
\[ C_{12} = C_{21} = E_{px} \cdot E_{py} \cdot \nu_{yx} / (E_{py} - E_{px}) \cdot (\nu_{yx})^2 \quad \Rightarrow C_{12} = C_{21} = 402 \text{ MPa} \]
\[ C_{22} = E_{px} \cdot E_{py} / (E_{px} - E_{py}) \cdot (\nu_{xy})^2 \quad \Rightarrow C_{22} = 5520 \text{ MPa} \]
\[ C_{66} = G_{xy} \quad \Rightarrow C_{66} = 1050 \text{ MPa} \]

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} =
\begin{bmatrix}
8730 & 402 & 0 \\
402 & 5520 & 0 \\
0 & 0 & 1050
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix} \text{ MPa}
\]

5.1.5.3- Valores de resistência e de projeto do compensado

Os valores de resistência do compensado à tração, à compressão e à flexão, obtidos dos resultados dos ensaios, estão sumarizados no quadro 5.14.

<table>
<thead>
<tr>
<th>Solicitação</th>
<th>VALORES DE RESISTÊNCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Paralelo às fibras de face</td>
</tr>
<tr>
<td>Tração</td>
<td>( f_{ptk}^X = 44,73 \text{ MPa} )</td>
</tr>
<tr>
<td>Compressão</td>
<td>( f_{pck}^X = 32,51 \text{ MPa} )</td>
</tr>
<tr>
<td>Flexão</td>
<td>( f_{pfk}^X = 61,43 \text{ MPa} )</td>
</tr>
</tbody>
</table>

Quadro 5.14. Valores de resistência do compensado
Os valores de projeto foram obtidos a partir destes valores de resistência e a utilização de coeficientes de segurança, considerando o compensado como madeira de 1ª categoria.

O coeficiente de segurança adotado para os valores de compressão e tração foi $\gamma_t = \gamma_c = 0,30$, ou seja:

$$\gamma_t = \gamma_c = 0,75 \times 0,85 \times 0,63 \times 0,72 = 0,30$$

0,75 - para considerar a dispersão nos ensaios admitindo uma variação máxima dos valores de 15%.

0,85 - para corrigir os valores obtidos com pequenos corpos de prova, para peças grandes.

0,63 - para reduzir os resultados de ensaios rápidos à carga de longa duração (10 anos).

0,72 - para ter um coeficiente de segurança (1,4) em relação à ruptura e limitar as tensões de serviço à valores inferiores ao limite de proporcionalidade.

Para os valores de flexão, o coeficiente de segurança foi $\gamma_f = 0,25$, ou seja:

$$\gamma_f = 0,75 \times 1,00 \times 0,63 \times 0,53 = 0,25$$

0,75 - idem ao coeficiente para compressão e tração.

1,00 - devido os corpos de prova utilizados terem comprimento significativo em relação à chapa compensada.

0,63 - idem ao coeficiente, para compressão e tração.

0,53 - para ter um coeficiente de segurança (1,9) em relação à ruptura de flexão.

O quadro 5.15 apresenta os valores de projeto para as chapas de compensado, tanto na direção paralela às fibras de face do compensado, como na direção perpendicular às estas fibras.
<table>
<thead>
<tr>
<th>Solicitações</th>
<th>VALORES DE PROJETO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Paralelo às fibras de face</td>
</tr>
<tr>
<td>Tração</td>
<td>$f_{ptd}^X = 13,5$ MPa</td>
</tr>
<tr>
<td>Compressão</td>
<td>$f_{pcd}^X = 10,0$ MPa</td>
</tr>
<tr>
<td>Flexão</td>
<td>$f_{ptd}^X = 16,0$ MPa</td>
</tr>
</tbody>
</table>

Quadro 5.15. Valores de projeto para o compensado

5.2- Ligação Parafusadas entre Peças de Madeira Compensada e Peças de Madeira Maciça

A utilização de chapas de madeira compensada junto com peças de madeira maciça, na execução de silos, trouxe a necessidade do estudo das ligações de peças destes dois tipos de madeira.

O elemento de ligação escolhido foi o parafuso auto-ataraxante (ver capítulo 4), devido a sua facilidade de instalação, em relação aos parafusos comuns com porca e maior resistência e eficiência frente aos pregos.

Como as normas brasileiras não estabelecem indicações específicas deste tipo de ligação, para caracterização de seus aspectos principais de uso e ação, recorreu-se à execução de ensaios seguindo metodologia apresentada por NEWLIN e GAHAGAN (1938). Os valores de ruptura obtidos destes ensaios são transformados em valores de projeto, conforme as recomendações, válidas para ligações em geral, da ABNT-NBR 7190 (1982), ver item 4.4. Ao final, tenta-se uma comparação destes valores com correspondentes obtidos pelo estudo de NEWLIN e GAHAGAN (1938), ver item 4.2, e os recomendados pela National Forest Products Association-NFPA (1977), ver item 4.3.

5.2.1- Ligação característica

A ligação característica que aparece no projeto proposto do silo de madeira compensada consiste numa ligação de duas peças,
onde a cobrejunta é de madeira compensada com 18mm de espessura e o bloco principal de madeira maciça, Peroba Rosa, com largura de, aproximadamente, 6cm. O parafuso instalado na face lateral do bloco principal da ligação, perpendicular às suas fibras, deverá resistir esforço de arrancamento direto e ou esforço ao deslocamento lateral.

5.2.2- Parafuso auto-atarraxante

Além das características físicas do parafuso auto-atarraxante, também suas características mecânicas afetam o comportamento da ligação. Para determiná-las, foram realizados testes de tração direta nestes parafusos, obtendo-se valores médios para a resistência à ruptura à tração e para o limite de proporcionalidade.

5.2.2.1- Dimensões do parafuso

As dimensões do parafuso auto-atarraxante foram definidas em função das várias recomendações de NEWLIN e GAHAGAN (1938), aplicáveis à ligação característica. Assim, sabendo-se que a melhor proporção prática, entre a espessura da cobrejunta e o diâmetro do parafuso é em torno de 3,5 para 1 (ver item 4.2) e que a cobrejunta é uma peça de madeira compensada de 18mm, fixou-se o diâmetro nominal do parafuso em 1/4" (6,35mm). A recomendação de que, para madeiras duras, a penetração da parte rosqueada do parafuso na madeira deve ser cerca de 7 vezes o diâmetro deste (ver item 4.2), determinou o comprimento nominal do parafuso em 60mm.

Desta forma, os parafusos utilizados foram especificados como auto-atarraxantes, 1/4" x 60mm, com cabeça sextavada. Os adquiridos no comércio de São Carlos - SP são de fabricação de H. Carlos Schneider - Joinville - Santa Catarina.

As dimensões médias do parafuso, obtidas pela média de sucessivas medidas realizadas nos parafusos ensaiados, com um paquímetro Mitutoyo - 0,02mm, encontram-se na figura 5.13. Observa-se ser o diâmetro da raiz da rosca em torno de 2/3 do diâmetro do fuste do parafuso.
Fig. 5.13 - Dimensões médias do parafuso auto-atarraxante 1/4" x 60 mm.

5.2.2.2. Ensaio de tração nos parafusos

a- Metodologia

Foram ensaiados à tração seis parafusos escolhidos ao acaso do lote de 500 peças adquiridas, para realização de todos os ensaios.

Os testes foram realizados em uma Máquina Universal de Ensaio - Instron - 100 KN, onde os parafusos presos por duas garra, uma lisa na cabeça e outra rosqueada na parte da rosca, foram submetidos à tração axial, sob uma velocidade de deformação constante e igual a 2mm por minuto, até à ruptura. A figura 5.14 mostra a montagem, para realização dos testes.

Fig. 5.14. Montagem para ensaio de tração de parafusos auto-atarraxantes.
A garra rosqueada, figura 5.14, foi especialmente desenvolvida para a realização do teste, tendo a parte da rosca sido aberta com machos, exclusivamente pré-elaborados.

Na instalação dos parafusos nas garras, tomou-se o cuidado de deixar sempre no mínimo seis fios de rosca do parafuso fora da garra, conforme recomendação geral das normas de ensaios de parafusos.

A medição do diâmetro da raiz da rosca dos parafusos, basicamente para o cálculo das tensões, foram feitas para cada parafuso, em três posições distintas (início, meio e fim da rosca) com ajuda de um paquímetro MITUTOYO, de precisão 0,02mm.

As deformações ocorridas, em função dos carregamentos, para cada ensaio, foram registradas pelo traçador de gráficos XY do conjunto INSTRON, com uma velocidade do papel ajustada para 20 cm por minuto. O objetivo desta velocidade relativamente alta foi obter-se um gráfico ampliado onde fosse possível identificar, com a maior precisão possível, o ponto onde as cargas e suas respectivas deformações deixam de ter um comportamento linear, considerado por definição o limite de escoamento do parafuso.

b- Resultados e conclusões

Todos os parafusos testados apresentaram ruptura entre o segundo e quarto fios de rosca.

Os diagramas carga x deformação para todos os ensaios mostraram-se com a mesma forma, figura 1 do Anexo 2, diferindo muito pouco nos valores.

Todos os dados e resultados dos testes encontram-se no quadro 11 do Anexo 2.

Uma análise destes resultados mostra uma tensão de ruptura à tração, para os parafusos auto-atarraxantes 1/4" x 60mm, com valor médio em torno de 653MPa e desvio padrão de 27MPa. Para a tensão de escoamento, o valor médio situa-se em torno de 498MPa e o desvio padrão em 19MPa.

Observa-se, que a resistência de ruptura à tração obedece às especificações da ASTM - A 307 (1980), onde é recomendado para parafusos de aplicação em geral, o valor mínimo de 60Ksi (415MPa). O valor elevado da tensão de escoamento se justifica em função da forma rolada, como os parafusos são fabricados.
5.2.3. Ensaios de ligações com parafusos auto-atarraxantes 1/4" x 60mm.

Os ensaios realizados cobrem dois dos principais aspectos do uso e ação dos parafusos auto-atarraxantes: resistência ao arrancamento direto e resistência ao deslocamento lateral.

5.2.3.1. Materiais

a - Madeira maciça - Peroba Rosa

Para montagem dos corpos de prova, necessários aos ensaios, foram selecionados do lote de madeira estocado no LaMEM para estudos, vigas de Peroba Rosa com seção de 6 x 12 cm², as quais proporcionaram o corte de 24 peças (blocos) com medidas, após aplainadas, de 5,5 x 5,5 x 22,0 cm³.

Dezoito dessas peças tinham suas fibras dispostas longitudinalmente, em relação ao comprimento das peças e as outras seis tinham suas fibras perpendiculares, em relação a este comprimento.

Inicialmente, foram realizados os testes de esforço lateral e, logo após, estas peças foram divididas em duas partes; uma com 5,5 x 5,5 x 12,0 cm³ para execução dos ensaios de arrancamento direto, tirada da zona não danificada pelo ensaio lateral; e outra, da qual foram obtidos quatro corpos de prova de 2,0 x 2,0 x 3,0 cm³, para determinações de umidade, densidade e resistência à compressão paralela às fibras, características importantes da madeira no comportamento das ligações (ver item 4.2). Os testes feitos para determinação destas características seguiram a metodologia usual no LaMEM (HELMSTEIN, 1974).

Os valores médios destas características, para cada bloco, encontram-se no quadro 12 do Anexo 2.

Observa-se, que a madeira escolhida para os ensaios apresentou características bastante uniformes, estando seca ao ar, com umidade variando entre os limites de 10% a 12%.

b - Madeira compensada

As cobrejuntas necessárias à montagem dos corpos de prova destinados aos ensaios de resistência aos esforços laterais, foram tiradas de uma única chapa de madeira compensada (18mm), es-
colhida ao acaso do lote de 12 chapas, especialmente obtidas junto às Indústrias Madeirit S.A. para o estudo dos silos. Cortaram-se 18 peças com 5,5 x 15,0 cm², sendo 12 com fibras de face longitudinais e 6 com fibras de face transversais em relação ao comprimento da peça.

Após a realização dos testes de esforços laterais, foram cortados de cada cobrejunta dois corpos de prova de 5,5 x 5,5 cm², para determinações de umidade, densidade e resistência à compressão paralela às fibras da face. Os testes feitos para determinação destas características seguiram a metodologia usual no LaMEM (HELL MEISTER, 1974).

Os valores médios destas características, para cada cobrejunta, encontram-se no quadro 12 do Anexo 2. Nota-se que a chapada de madeira compensada encontrava-se com teor de umidade bastante baixo, em torno de 7,5%, característico de seu processo de fabricação e revestimento impermeável que lhe é aplicado.

5.2.3.2. Ensaios de resistência ao arrancamento direto

a - Metodologia

Foram ensaiados 18 corpos de prova montados com os blocos de número 7 a 24, veja quadro 12 do Anexo 2, conforme detalhes da figura 5.15.

Seis corpos de prova (19 a 24) tiveram o parafuso cravado na direção tangencial às fibras do bloco; outros seis (7 a 12) tiveram o parafuso cravado na direção radial às fibras do bloco; e os últimos seis (1 a 6) numa direção inclinada em relação às duas anteriores, mais ou menos a 45° com relação às fibras do bloco. Este procedimento teve por objetivo verificar eventuais influências destas direções de cravação no arrancamento direto.

Em todos os testes, os parafusos tiveram sua parte rosqueada completamente inserida na madeira, o que corresponde a um contato nominal da parte rosqueada do parafuso com a madeira de 36,4 mm, ou seja, em torno de seis diâmetros do parafuso.

As dimensões dos blocos, nos quais se cravaram os parafusos, foram suficientes para permitir a penetração desejada do parafuso e evitar problemas de afastamentos mínimos das bordas, recomendados.
Fig. 5.15 - Método de ensaio para arrancamento direto

O diâmetro "ótimo" do furo guia, para a parte rosqueada do parafuso, foi escolhido em função de sucessivas tentativas de cravação. Para diâmetros do furo guia menores que 4,5 mm, muitos parafusos quebraram por ocasião da cravação. Com 4,5 mm e ajuda de parafina, todos os parafusos testados foram inseridos com facilidade de nos blocos de ensaio. O diâmetro do furo guia de 4,5 mm corresponde, aproximadamente, a 71% do diâmetro do fuste do parafuso, o que está de acordo com o recomendado pela NFPA (veja item 4.3.1) para madeiras densas. O aspecto da superfície de contato feita pelo parafuso, quando cravado na madeira com o furo guia de 4,5 mm, é mostrado na figura 5.16.

Fig. 5.16 - Aspecto da superfície feita pelo parafuso auto-atarraxante, quando cravado na madeira.

Os testes foram realizados com ajuda de um sistema de aplicação de carga, composto de um cilindro hidráulico VICKERS, com capacidade de 20 KN, um anel dinamométrico E.L.E. com capacidade de 20 KN, uma estrutura auxiliar de fixação do cilindro e um painel
de comando. Para cada ensaio, o bloco de madeira foi fixado à estrutura auxiliar, enquanto o parafuso, preso ao anel dinamométrico por garras especiais, era solicitado à tração até à ruptura. A velocidade de deformação no início dos ensaios foi mantida constante em torno de 1mm por minuto, atingindo valores mais elevados ao final. Em todos os ensaios, somente a carga de ruptura foi registrada.

b - Resultados e discussões

O quadro 13 do Anexo 2 apresenta todos os valores referentes aos testes realizados.

Comparando a tensão no parafuso, no momento da ruptura da ligação, valor médio de 686 MPa, com a resistência à tração destes parafusos, valor médio 653 MPa, obtida em 5.2.2.2-b, constata-se uma diferença mínima, em torno de 5% entre os valores. Diversidade esta, que pode ser atribuída, especialmente, à diferença de mecanismos de aplicação e controle de carregamentos utilizados nos dois ensaios. A ruptura das ligações ocorreu, pois, no parafuso e não na madeira.

A constância no comportamento da ruptura em todos os testes, induz a pensar que a penetração do parafuso (menor que a recomendada pela NFPA, item 4.3) adotada para o ensaio foi excessiva, isto é, um parafuso menor em comprimento poderia desenvolver a mesma resistência. Não se cogitou em utilizar parafusos menores, porque estes possuem um comprimento do fuste insuficiente, para atravessar a cobrejunta de madeira compensada (18mm), o que enfraqueceria a ligação no mínimo 20% em relação aos sobrepjantes esforços laterais (ver item 4.2.2).

A comparação entre os diferentes tipos de cravação do parafuso na madeira, tangencial, radial e inclinado em relação às fibras, ficou prejudicada em função da ruptura ter ocorrido sempre nos parafusos. Nada indica, porém, sejam diferentes devido ao comportamento uniforme de todas as rupturas.

Também por este motivo, não foram realizadas as correções dos valores de ruptura, em função da densidade média e nem a análise estatística de comparação entre os resultados dos diferentes tipos de cravação.

c - Valores admissíveis de projeto segundo a ABNT-NBR 7190 (1982)

A NBR 7190-82 (ver item 4.4) estabelece que a carga admissível na ligação deve ser 20% do limite de resistência, obtida
de ensaios de ligações em tamanho natural.

Tendo os ensaios apresentado um valor médio para resistência de 9,62KN (ver quadro 13 do Anexo 2), a carga admissível para projeto de um parafuso auto-atarraxante (1/4" x 60mm) solicitado ao arrancamento direto, com carga paralela às fibras da madeira e instalado na face lateral de uma peça de Peroba Rosa, seca ao ar, tem valor médio em torno de 1,92KN, com desvio padrão de 0,056KN.

A carga admissível não será apresentada em valores correspondentes a uma unidade de penetração do parafuso na madeira, o que é normal em recomendações para arrancamento direto, por não ter sido determinada a mínima penetração necessária, ao desenvolvimento da carga de arrancamento máxima.

d- Comparação entre os valores de ensaio e os calculados, segundo NEWLIN e GAHAGAN (1938)

Newlin e Gahagan, para um parafuso auto-atarraxante de diâmetro \( \delta_s \), cravado na lateral de um bloco de madeira seca ao ar, com a densidade média \( \rho_w \), baseada em peso e volume secos em estufa, estabelecem, para o arrancamento, o valor de ruptura dado pela expressão (ver item 4.2.1):

\[
F_{sak} = 7500 . \delta_s^{3/4} . \rho_w^{3/2} \quad \text{(lb/in)}
\]

ou

\[
F_{sak} = 0,116 . \delta_s^{3/4} . \rho_w^{3/2} \quad \text{(KN/mm)}
\]

| \( \delta_s = 6,35\text{mm} \) | \( \rho_w = 0,76 \) | \( F_{sak} = 0,31\text{KN/mm} \) |

valor este, que deve ser corrigido, em função da diferença entre tensões de ruptura do parafuso nos ensaios e nos estudos de Newlin e Gahagan, iguais a 653MPa e 531MPa, respectivamente:

\[
F_{sak} = F_{sak} \cdot 653/531 \quad \Rightarrow \quad F_{sak} = 0,38\text{KN/mm}
\]

Tendo o parafuso (1/4" x 60mm) uma penetração na madeira de 36,4mm (ver item 5.2.3.2-a), a carga prevista de ruptura será 13,83KN.
A carga admissível para projeto, adotando um coeficiente de segurança cinco, será de 0,076KN/mm em termos unitários ou 2,77KN no total.

Destes valores, pode-se concluir serem os resultados obtidos por Newlin e Gahagan, para arranque direto de parafusos auto-atarraxantes da lateral de blocos de madeiras americanas, "discutíveis" para aplicação às ligações com madeiras nacionais, visto terem conduzido a valores superiores aos obtidos nos ensaios.

Atualmente, encontrando-se em desenvolvimento no LaMEM um estudo sobre ligações parafusadas, a nível de doutorado, que certamente abordará estes aspectos com maior profundidade.

e- Comparação entre os valores de ensaio e os especificados pela NFPA (1977)

No quadro 3 do Anexo 1 obtém-se para o parafuso de diâmetro 1/4" (6,35mm), cravado em madeira seca ao ar com densidade igual a $\rho_w = 0,76$, a carga admissível recomendada para projeto de 413 lb/in ($0,072KN/mm$).

Pode-se observar a concordância entre os valores recomendados pela NFPA e os calculados por Newlin e Gahagan (ver item 5.2.3.2-d), devidamente corrigidos em função da qualidade dos parafusos usados. Por extensão, são estes valores também "discutíveis" para aplicação a ligações com madeiras nacionais.

f- Conclusão

Será adotada como carga admissível ao arranque direto de parafusos auto-atarraxante (1/4" x 60mm), cravados perpendicularly às fibras da lateral de peças de Peroba Rosa e solicitados a esforços em qualquer direção em relação às fibras, o valor médio de 1,92KN. Valor este, obtido de ensaios realizados, segundo a metodologia utilizada por NEWLIN e GAHAGAN (1938) e obedecendo às recomendações da ABNT-NBR 7190 (1982) no que diz respeito à resistência das ligações em geral.

Para desenvolver a resistência dada acima, o parafuso deverá estar com toda sua parte rosqueada, inserida na madeira. Para penetrações menores, admite-se uma redução proporcional para esta resistência (ver item 4.2.1).
5.2.3.3- Ensaios de resistência ao deslocamento lateral

a- Metodologia

Foram ensaiados 18 corpos de prova, montados com os blocos de número 1 a 18 e as cobrejuntas de respectivas numerações, veja quadro 12 do Anexo 2, conforme detalhes da figura 5.17.

As diferentes posições relativas entre a direção das fibras do bloco, a direção das fibras de face da cobrejunta e a direção do carregamento, foram usadas para verificar possíveis influências destas nos resultados.

Fig. 5.17. Corpo de prova do ensaio de resistência a esforços laterais
Das montagens, verifica-se que seis corpos de prova (1 a 6) foram testados com carregamento paralelo, tanto às fibras de face da cobrejunta de madeira compensada como às fibras do bloco de madeira maciça, carregamento tipo A; outros seis corpos de prova (7 a 12) foram testados com o carregamento perpendicular às fibras de face da cobrejunta e paralelo às fibras do bloco, carregamento tipo B; e os últimos seis corpos de prova (13 a 18) com carregamento paralelo às fibras de face da cobrejunta e perpendicular às fibras do bloco, carregamento tipo C.

Para a cobrejunta, o diâmetro do furo guia foi igual ao diâmetro nominal do fuste dos parafusos (6,35mm) e para o bloco, onde se inseriu a ponte e a parte rosqueada do parafuso, o diâmetro "ótimo" para o furo guia foi de 4,5mm, conforme explicado no item 5.2.3.2-a. O comprimento do furo guia, para a cobrejunta foi passante e para o bloco pouco superior à penetração prevista do parafuso. Entre a cabeça do parafuso e a cobrejunta foram usadas ar-ruelas.

As dimensões dos corpos de prova foram suficientes para permitir a penetração do parafuso, evitar problemas de afastamento mínimos recomendados das bordas e propiciar a inclinação desejada do eixo do corpo de prova.

Os ensaios foram realizados em uma Máquina Universal de Ensaios - AMSLER - 250KN, sendo a carga aplicada ao corpo de prova, através de uma junta universal. A posição do corpo de prova foi tal que a linha de força passava, aproximadamente, através do ponto onde o parafuso unia a cobrejunta e o bloco, minimizando, desta forma, os problemas de flexão na ligação, figura 5.18.

A aplicação do carregamento deu-se de forma contínua, com uma velocidade de deslocamento relativo entre a cobrejunta e o bloco, mantida em torno de 0,5mm por minuto, atingindo valores mais elevados ao final.

Para todos os ensaios, a aplicação do carregamento foi precedida de uma carga de acomodação do corpo de prova da ordem de 1,75KN, 25% da carga prevista para ruptura. Carga de ruptura está fixada em torno de 7,0KN, através de ensaio prévio de um corpo de prova testemunho.

Objetivando medir os deslocamentos relativos, entre a cobrejunta e o bloco principal da ligação, foi utilizado um transdutor de deslocamentos da HEWLETT PACKARD (1968), modelo 24 DCDT-500, alimentado por uma fonte de 24 volts, também da Hewlett Packard.
Fig. 5.18- Método de ensaio para parafusos auto-atarraxantes solicitados a esforços laterais.

Fixou-se o corpo cilíndrico do transdutor ao bloco da ligação, enquanto sua haste foi fixada à cobrejunta, conforme ilustra a fig. 5.18. Assim, qualquer deslocamento relativo entre peças pode ser avaliado em função do movimento axial da haste do transdutor.

Para registrar estes deslocamentos relativos, o transdutor de deslocamento foi acoplado a um sistema de aquisição de dados do LaMEM, constituído de uma unidade de controle, modelo 3497-A, e do micro computador, modelo 9825-T, ambos da Hewlett Packard. Mediante um pequeno programa pré-elaborado, o micro imprimia, para cada ensaio, os deslocamentos relativos a cada incremento de carga de 10Kgf (0,098KN), até carregamentos de ordem de 5 a 6KN, próximos à ruptura, dependendo do comportamento do corpo de prova, no momento da teste.

Para cada ensaio, traçou-se a curva deslocamento relativo x esforço, que serviu para a determinação da carga limite proporcional e a carga correspondente ao deslocamento relativo entre cobrejunta e bloco de 1,5mm. Estes valores, juntamente com a carga de ruptura determinada por ocasião da realização dos ensaios, possibilitaram a comparação e a caracterização das ligações ensaiadas.

Em vista da variação gradual e contínua da inclinação da curva deslocamento relativo x esforço, foi difícil definir a carga limite proporcional. Optou-se por obtê-la a partir da...
convencional de limite de proporcionalidade, mostrada em linha pontilhada na figura 2 do Anexo 2, tendo em conta a existência de dois trechos quase retos no início e no fim do carregamento, se desprezados os pontos iniciais de acomodação da ligação.

Pela intersecção dessas retas, traçou-se uma paralela ao eixo dos carregamentos, até encontrar a curva em um ponto, cuja ordenada se convencionou valer a carga limite proporcional. Este procedimento foi utilizado por LUCHESE e STAMATO (1967) no estudo de ligações com parafusos comuns.

b- Resultados e discussões

Os deslocamentos relativos entre as peças, para a condição de ruptura, foram bastante elevados, provocando deformações acentuadas nos parafusos, figura 5.19, que os levaram à ruptura.

Fig. 5.19- Deformação típica de parafusos auto-atarraxantes em solicitações laterais.

Embora com deformações acentuadas, em nenhum caso se contatou o arrancamento do parafuso da madeira, sempre a ligação rompeu pelo parafuso.

As curvas deslocamento relativo x esforços para os diversos ensaios, apresentaram-se sempre com a mesma forma, figura 2 do Anexo 2, e com pequenas variações nos valores.

O quadro 14 do Anexo 2 sumariza os valores referentes aos testes, apresentando as cargas de ruptura, as cargas para deslocamentos relativos de 1,5mm e as cargas limites proporcionalis, deviamente corrigidas em função de uma densidade média e também de uma
resistência média à compressão paralela às fibras.

c- Comparação entre os diferentes tipos de ensaio

Para verificar a equivalência entre os três diferentes tipos de ensaios realizados, escolheu-se a carga limite proporcional como referência, pelo fato de que em sua determinação considera-se o traçado da curva deslocamentos relativos x esforços.

Dois testes de hipótese foram feitos em relação aos valores médios desta carga limite proporcional, estando os resultados no quadro 15 do Anexo 2.

O modelo matemático admitido supõe que para cada observação $Y_{ti}$, a potência $10^{Y_{ti}}$ pode ser representada pela soma de uma média geral $\mu$, um efeito de tratamento $\delta_t$ e um erro $\varepsilon_{ti}$, ou seja,

$$Y_{ti} = \mu + \delta_t + \varepsilon_{ti}$$

A importância ou não do efeito de tratamento é verificada aplicando-se o teste $F$ sobre a hipótese: $\delta_t = 0$, para um nível de significância máximo de $\alpha = 5\%$.

Inicialmente, procedeu-se a comparação dos valores médios dos três tipos de ensaio. A hipótese $\delta_t = 0$, foi rejeitada para um nível de significância igual a 5%, indicando existirem razões para se considerar o comportamento da carga limite proporcional diferente, ou dependendo da direção do carregamento em relação às fibras do bloco e ou em relação às fibras de face da cobrejunta.

Posteriormente, analisou-se somente os ensaios com carregamentos paralelos às fibras do bloco, isto é, ensaios com carregamentos do tipo A e B. A hipótese $\delta_t = 0$ foi rejeitada para um nível de significância maior que 25%, não existindo, pois, razões para se considerar a direção das fibras de face da cobrejunta como um fator que modifique o comportamento da carga limite.

Ademais, a resistência ao deslocamento lateral da ligação característica parece depender, sobretudo, da direção do carregamento, em relação às fibras do bloco principal da ligação, sendo a influência da direção das fibras de face da madeira compensada de prezível.
d- Valores de projeto, segundo a ABNT-NBR 7190 (1982)

A NBR 7190/82 condiciona a carga admissível numa ligação ao menor dos valores: 50% do limite de proporcionalidade; 20% do limite de resistência; esforço correspondente ao deslocamento relativo de 1,5mm entre as peças ligadas (ver item 4.4).

O quadro 16 do Anexo 2, apresenta estes valores em função dos dados dos ensaios.

Pode-se observar que, tanto para os carregamentos paralelos, como para os carregamentos perpendiculares às fibras do bloco da ligação, a resistência ao deslocamento lateral é estabelecida pela condição do limite de proporcionalidade, embora a condição do limite de resistência, praticamente, coincida com esta.

A carga admissível para a ligação característica, quando realizada com madeira seca ao ar e parafusos de 1/4" x 60mm, com carregamento paralelo às fibras do bloco tem valor médio de 1,39KN, com desvio padrão de 0,093KN. Para carregamento perpendicular às fibras do bloco, o valor médio é de 1,32KN, com desvio padrão de 0,086KN.

e- Comparação entre os valores de ensaio e os calculados segundo NEWLIN e GAHAGAN (1938)

Para ligações entre peças de madeira de mesma espécie, secas ao ar, com parafusos auto-atarraxantes cravados na lateral do bloco, Newlin e Gahagan estabelecem para a carga admissível de projeto paralela às fibras, o valor dado pela expressão (ver item 4.2.2):

\[ F_{sld} = k_d \cdot \delta_s^2 \]

onde \( k_d = 2200 \) para espécies de madeira do grupo 4 (ver quadro 1 - Anexo 1), isto é, madeiras com densidade semelhante a Peraoba Rosa.

ou,

\[ F_{sld} = 2200 \cdot \delta_s^2 \text{ (lb), com } \delta_s \text{ em polegadas} \]

ou,

\[ F_{sld} = 0,0152 \cdot \delta_s^2 \text{ (KN), com } \delta_s \text{ em mm.} \]

\[ \delta_s = 6,35mm + F_{sld} = 0,61KN \]

valor este, que deve ser corrigido em função da diferença entre os
limites de escoamento do parafuso usado e do recomendado, relação espessura da cobrejunta/diâmetro do parafuso e coeficiente de segurança, para poder ser comparado aos valores do ensaio:
- limite de escoamento do parafuso
  - parafuso usado → 498MPa
  - utilizado por Newlin e Gahagan → 310MPa
- fator de correção → \( \sqrt{\frac{498}{310}} \) = 1,27

- relação cobrejunta/parafuso
  - espessura da cobrejunta → 18mm > relação → 2,83
  - diâmetro do parafuso → 6,35mm
  - fator de correção → 0,88 (ver fig. 1 - Anexo 1)

- coeficiente de segurança
  - usado pela NBR → 2,0
  - usado por Newlin e Gahagan → 2,25
  - fator de correção → 1,125

portanto o valor de Newlin e Gahagan corrigido para as condições do ensaio é:

\[
F_{sld} = F_{sld} \times (1,27 \times 0,88 \times 1,125) \rightarrow F_{sld} = 0,77\text{KN}
\]

Comparando-se este valor àquele obtido através dos ensaios e recomendações da NBR-7190/82 (ver item 5.2.3.3-d), constata-se serem os valores admissíveis para a resistência lateral, calculados segundo Newlin e Gahagan, bastante inferiores aos obtidos dos ensaios.

Grande parte desta diferença deve-se, talvez, ao procedimento utilizado para determinar o limite proporcional das ligações, não definido por NEWLIN e GAHAGAN (1938), também, ao fato de serem as recomendações dos autores para ligações com cobrejunta e bloco da mesma espécie de madeira.

No entanto, a exemplo do que já ocorreu para a solicitação ao arrançamento direto, os resultados obtidos para resistência ao deslocamento lateral com espécies de madeiras americanas, são "discutíveis" para aplicação a ligações com madeiras maciças e
madeiras compensadas nacionais.

f- Comparações entre os valores de ensaio e os específicos

dos pela NFPA (1977)

Esta comparação ficou prejudicada por não constar diretamente nas tabelas de valores admissíveis da NFPA, nem o parafuso 1/4" x 60mm e nem a cobrejunta de espessura 18mm, sem considerar o fato que esta é de madeira compensada e não maciça da mesma espécie do bloco, como especificado.

Entretanto, com a finalidade de tentar uma comparação, foram feitos ajustes nos valores recomendados para a ligação mais semelhante a estudada.

Quanto a ligações com parafusos de 1/4" x 4" e cobrejuntas de 1 1/2", a NFPA recomenda para a resistência aos esforços laterais, os valores admissíveis de 200 lb (0,89KN) para carregamentos paralelos e 190 lb (0,85KN) para carregamentos perpendiculares às fibras de madeira do grupo I, semelhantes à Peroba Rosa.

As correções deram-se em função da espessura da cobrejunta e do coeficiente de segurança:

- relação espessura da cobrejunta/diâmetro do parafuso
  - ligação do ensaio → 2,83 → correção 0,88
  - ligação da NFPA → 5,00 → correção 1,18
  - fator de correção → 0,88/1,18 = 0,75

- coeficiente de segurança
  - adotado pela NBR 7190/82 → 2,0
  - usado pela NFPA → 2,25
  - fator de correção → 1,125

Portanto, os valores da NFPA, corrigidos para as condições de ensaio são:

- carregamento paralelo às fibras

  \[ F_{sld}^x = 0,89KN \times 0,75 \times 1,125 \rightarrow F_{sld}^x = 0,75 \, KN \]

- carregamento perpendicular às fibras

  \[ F_{sld}^y = 0,85KN \times 0,75 \times 1,125 \rightarrow F_{sld}^y = 0,72 \, KN \]
Pode-se observar a concordância entre os valores recomendados pela NFPA e os obtidos por Newlin e Gahagan (ver item 5.2.3.3-e), devidamente corrigidos, em função dos fatores de influência. Por extensão, são estes valores também "discutíveis" para aplicação a ligações com madeiras nacionais.

Outrossim, observa-se que as especificações da NFPA admitem serem diferentes a resistência ao deslocamento lateral com carregamento paralelo e a resistência com carregamento perpendicular às fibras da madeira, o que coincide com o constatado nos ensaios.

g- Conclusão

A carga admissível para parafusos auto-atarraxantes (1/4" x 60mm) em ligações com cobrejunta de madeira compensada (18mm) e bloco de Peroba Rosa seca ao ar, tem valor médio de 1,40KN, se o carregamento for paralelo às fibras do bloco e valor de 1,32KN, se o carregamento for perpendicular às fibras do bloco. Admite-se os parafusos cravados na face lateral do bloco, perpendicularmente às suas fibras.

Estes valores foram obtidos de ensaios realizados, seguindo a metodologia utilizada por NEWLIN e GAHAGAN (1938) e obedecem às recomendações da ABNT-NBR 7190 (1982) no que diz respeito à resistência das ligações em geral.
6- PROJETO DE UM SILO HEXAGONAL DE MADEIRA COMPENSADA COM FUNDO TREMONHADO

6.1- Generalidades

Devido às chapas estruturais de madeira compensada dispor níveis no mercado, serem planas e com "rigidez" tal que dificulta qualquer tentativa de curvá-las, os formatos que mais se adaptam à construção de silos com estas chapas são os de seções poligonais. Isto, pela perspectiva de adotar-se uma das dimensões da própria chapa, ou um seu múltiplo, como lado do polígono.

Dentre as seções poligonais, as mais viáveis devido à simetria, são as de número par de lados, isto é, as quadradas, as hexagonais, as octogonais...

Nas investigações iniciais, as seções quadradas, a priori, mediante sua simplicidade construtiva, mostravam-se as melhores. Entretanto, a necessidade de adotar lados relativamente grandes para conseguir capacidades de armazenamentos razoáveis, conduziu para solicitações em seus elementos estruturais, que invidabilizaram sua utilização.

A forma hexagonal, apresentou-se como solução mais racional, pois, embora menos simples construtivamente, possibilitou capacidades de armazenamentos maiores com seções de lados relativamente pequenos, o que se traduziu em solicitações menores nos elementos estruturais.

Os silos construídos com chapas de madeira compensada, aqui abordados, são do tipo vertical, com a parte do corpo em forma prismática hexagonal reta e fundo plano ou tremonhado.

A tremonha, quando existente, acompanhando o formato do corpo do silo, constitui-se em um tronco de pirâmide hexagonal reto, invertido, de base maior igual a seção transversal do corpo do silo.

Basicamente, os silos são para armazenamento de cereais, podendo, entretanto, servir para armazenamento de qualquer outro produto granular seco, sem coesão. Tanto as operações de carga como descarga são centradas e por gravidade.

As chapas de madeira compensada utilizadas possuem espessura de 18 mm, sendo interligadas através de peças de madeira maciça, da espécie "Peroba Rosa", e parafusos auto-atarraxantes (ver item 5.2).
Visando, abordar todos os aspectos característicos e peculiares do projeto destes silos hexagonais de madeira compensada, tanto a nível de procedimentos de cálculos como de detalhes construtivos, apresenta-se a análise feita numa de suas formas mais completas, o silo dotado de fundo tremohando.

Dentro do pensamento de desenvolver um estudo que atenda às necessidades do pequeno agricultor, a capacidade de armazenamento do silo foi estabelecida em torno de 30m³ de cereal.

Suas dimensões foram fixadas, atendendo a este volume de armazenagem desejado e às dimensões comerciais das chapas de madeira compensada.

Assim, aproveitando a largura da chapa, o lado da seção transversal, hexagonal, do corpo do silo, nominalmente, ficou igual a 1,22m (figura 6.1).

\[ \text{Chapa de madeira compensada} \]

\[ l_p = 1,22 \text{ m} \]

\[ \alpha = 60^\circ \]

Fig. 6.1. Seção hexagonal do corpo do silo

A disposição das chapas de madeira compensada na vertical, propiciando hexágonos com lado de 1,22m, em detrimento da outra opção que seria colocá-las na horizontal, propiciando hexágonos de 2,44m, deu-se em função dos elevados esforços que surgem na estrutura com a segunda opção e também do melhor aproveitamento da
rigidez das chapas compensadas (ver item 6.3.1.1-a).

A altura do corpo do silo, função do volume de cereal a armazenar, nominalmente, ficou igual a 7,32m, três alturas de compensado (figura 6.2).

\[ h_p \rightarrow \text{altura do compensado, m} \]
\[ h \rightarrow \text{altura do corpo do silo, m} \]

**Fig. 6.2. Altura do corpo do silo**

A inclinação das laterais da pirâmide que constitui a tremonha do silo, em relação à horizontal, foi adotada 45° (fig. 6.3). Isto porque, normalmente, quando secos, os cereais apresentam ângulo de atrito interno da ordem de 30° e quando úmidos, valores dificilmente maiores de 45°, facilitando-se desta forma, o escoamento destes, por gravidade, mesmo quando ensilados com teor de umidade relativamente elevado.
\( \theta \) = ângulo de inclinação da tremonha em relação a horizontal

Fig. 6.3. Tremonha do silo hexagonal

Para possibilitar a descarga do material ensilado, a altura da boca de saída da tremonha do silo em relação ao piso foi adotada em 0,80m (figura 6.3).

Acobertura do silo, admitida em duas águas, com telhas de cimento amianto, teve sua inclinação fixada em 15°, de acordo com as recomendações técnicas.

Interessante observar, o aproveitamento das chapas de madeira compensada, que na parte do corpo do silo foi total e na tremonha sofreram pequenos cortes, necessários apenas para permitir a montagem piramidal.

6.2- Análise Construtiva e Estrutural do Silo

O esquema construtivo, ou seja, a disposição relativa dos elementos que constituem o silo, bem como o esquema estrutural adotado para o projeto são limitados pelo formato hexagonal do silo, pelas medidas comerciais, tanto das peças de madeira maciça, como das chapas de madeira compensada utilizadas, e ainda, pelas solicitações
a que, normalmente os elementos de silos hexagonais estão sujeitos.

Vistas todas estas variáveis, dentro de um esquema construtivo pré-concebido, foram inicialmente fixadas dimensões para os elementos do silo, e a seguir, estas dimensões foram verificadas em função de um esquema estrutural especialmente desenvolvido, visando ao aproveitamento mais racional possível dos materiais utilizados.

Neste sentido, o esquema estrutural desenvolvido, teve por objetivo, aproveitar a rigidez, tanto dentro do plano das chapas de madeira compensada "ação de chapa", como perpendicularly a elas, "ação de placa", para absorver os carregamentos, a exemplo do que é feito na análise de folhas poliédricas (CILONI, 1984).

As cargas devido ao material ensilado e ao peso próprio, atuantes na estrutura, foram resolvidas por superposição, como sendo suportadas em uma estrutura de chapas de madeira compensada, funcionando, simultaneamente, como "placas" e como "chapas", interligadas através de peças de madeira maciça, com parafusos auto-atarra- xantes.

Este tipo de ligação, constituída de uma linha de parafusos, foi, teoricamente, admitida para efeito de análise estrutural, funcionando como "rótula".

6.2.1- Corpo do silo

A forma prismática hexagonal, possibilitou a adoção de um sistema estrutural monolítico para o corpo do silo, onde as chapas de madeira compensada, conectadas longitudinalmente pelas arestas do prisma hexagonal, pilares em madeira maciça, e transversalmente por anéis de enrijeecimento, também em madeira maciça, constitui-se numa estrutura espacial resistente (figura 6.4).

No corpo do silo, as ações do material ensilado e do peso próprio, traduzem-se em dois tipos de carregamentos a serem observados: pressão horizontal, normal as chapas de madeira compensadas, e carga tangencial as chapas de madeira compensadas, (figura 6.5). Nesta carga tangencial, incluem-se o atrito do material ensilado e o peso próprio do corpo do silo, supostos uniformemente distribuídos por sua superfície lateral.
Fig. 6.4. Corpo do silo
\( p_h \) - pressão horizontal nas paredes verticais do silo, por m² de superfície, devido ao material ensilado (KN/m²)

\( q_c \) - carga tangencial às paredes verticais do silo, por m² de superfície, devido ao atrito do material ensilado, \( p_w' \), e ao peso próprio do corpo do silo, \( g_1 \).

Fig. 6.5 - Solicitações sobre as paredes do corpo do silo

6.2.1.1 - Pressão horizontal - \( p_h \)

A pressão normal à superfície do compensado provoca flexão biaxial, "ação de placa", e este transmite tal carga, em forma de quinhões para seus apoios, que são as arestas e os anéis de enrijecimento.

Como construtivamente, foram colocadas na vertical, isto é, com as fibras de face na vertical, uma das direções da flexão foi admitida coincidir com a direção destas fibras e a outra perpendicular a esta (figura 6.6).

"x" - direção das fibras de face da chapa de madeira compensada

"y" - direção normal às fibras de face da chapa de madeira compensada.

\( l_x \) - dimensão da placa na direção das fibras de face do compensado, m

\( l_y \) - dimensão da placa na direção perpendicular às fibras de face do compensado, m

Fig. 6.6 - Referências adotadas na placa de compensado, na flexão.
Para o cálculo dos momentos fletores, devido à ortotropia das chapas compensadas (ver capítulo 3) foi utilizado um programa computacional, BATHE et al. (1974), que possibilitou a solução das placas por elementos finitos.

No Anexo 3, encontram-se os quadros 1, 2 e 3, onde se podem obter os momentos fletores adimensionais, para carregamentos normais unitários, sobre placas com diferentes relações, \( \varepsilon = l_y/l_x \), e diferentes condições de vinculação. Os momentos fletores para os carregamentos reais, podem facilmente serem obtidos, conforme indicações nas tabelas.

Neste tratamento à flexão das chapas de madeira compensada, admitiu-se serem pequenos, e portanto possíveis de serem desprezados, os deslocamentos transversais de seus apoios, ou seja, as arestas verticais do prisma que constitui o corpo do silo e os anelis de enrijeecimento foram considerados apoios rígidos.

Na transmissão do carregamento, sob forma de quinhões, para os apoios, não foi considerada a ortotropia das chapas, ficam do estes quinhões determinados somente pela geometria e condições de apoio, conforme os quadros 1, 2 e 3 do Anexo 3. Admitiu-se serem tanto os quinhões como as reações que os equilibraram, uniformemente distribuídos ao longo dos apoios.

a- Apoio ao longo das arestas verticais (pilares)

Os quinhões de cargas nas arestas transformam-se em cargas de tração paralelas ao plano das chapas de madeira compensada, ocorrendo então a "ação de chapa", com tais cargas sendo autoequilibradas, horizontalmente, devido à forma poligonal fechada e à simetria da estrutura, como também, devido a simetria do carregamento. Verticalmente, as cargas não equilibradas pelo atrito com as paredes são sustentadas pela tremenho do silo (ver item 6.2.2.3).

As arestas foram consideradas rígidas, isto é, como apoios indeslocáveis, e as reações a\( r \) obtidas, utilizadas como cargas em sentido contrário na estrutura, restabelecendo o carregamento inicial, já que estes apoios na realidade não existem. Este procedimento é semelhante àquele dos processos simplificados de análise de folhas poliédricas (CILONI, 1984).

Estas cargas, então, são decompostas (fig.:6.7), originando os efeitos de chapa. Observe-se que cada chapa de madeira compensada fica sujeita a um esforço de tração devido à duas parcelas;
uma de seu próprio carregamento e outra devido aos carregamentos das chapas adjacentes.

\[ r_{ah} \] + reação, "assumida", uniformemente distribuída, sobre as arestas do prisma do corpo do silo (pilares), devido à pressão horizontal, kN/m

a) distribuição da pressão normal as chapas de madeira compensada, através de quinhões, para as arestas do prisma (que "funcionam" como apoio das placas)

b) decomposição das reações de "placa", em esforços nos planos das chapas

**Fig. 6.7.** Quinhões de carga horizontal das arestas
A figura 6.8 complementa a 6.7, mostrando os esforços de tração perpendiculares às fibras das chapas compensadas, devido aos quilhões de carga normal à sua superfície, absorvidos pelas arestas.

\[ \eta_{ph}^Y = \gamma_{ah} + r_{ah} = \gamma_{ah} \left( \frac{1}{\text{sen} \alpha} + \frac{1}{\text{tg} \alpha} \right) + \eta_{ph}^Y = 1,73 \gamma_{ah} \]

\[ \eta_{ph}^Y \rightarrow \text{tração nas chapas de compensado, devido a pressão horizontal, na direção normal às suas fibras de face, KN/m} \]

Fig. 6.8. Tração na chapa de compensado, devido a carga horizontal

Vemos que, as chapas de madeira compensada, funcionando como "placas" para absorver o carregamento normal às suas superfícies, apoiam-se mutuamente pelas arestas, admitidas como rótulas, e originam carregamentos de tração em seus próprios planos. Assim, o efeito portante da estrutura se baseia nesse efeito recíproco de placas "flexíveis" e de chapas "rígidas" onde as arestas desempenham papel fundamental, constituindo-se em verdadeiras linhas de apoio dentro da estrutura.

Para possibilitar isto, e também como veremos mais adiante, para absorver carregamentos verticais devidos ao peso próprio e a pressões de atrito, as arestas verticais, pilares do prisma hexagonal que constitui o corpo do silo, foram admitidas em madeira maciça, da espécie Peroba Rosa, inicialmente na bitola comercial 6 x 16cm³, recortadas de maneira a possibilitar a montagem hexagonal
(figura 6.9). Devido à altura do corpo do silo, superior a 7m, estes pilares são formados por duas peças, emendadas ao nível do eixo do 60 anel de enrijecimento.

Fig. 6.9. Arestas (pilares) do prisma hexagonal

Assim, os pilares de madeira maciça, devido à pressão horizontal, ficam submetidos a esforços de tração transversal às suas fibras. Em consequência das dimensões mínimas, necessárias aos pilares, não só em função dos esforços de compressão oriundos dos carregamentos verticais, como também, devido à cravação dos parafusos auto-atarraxantes das ligações com as chapas de compensado, estes esforços de tração transversal são pequenos e suscetíveis de serem desprezados.

Os parafusos auto-atarraxantes ficam solicitados, simultaneamente, a esforços laterais perpendiculares às fibras dos pilares, e a arrancamento direto (figura 6.10).
\( r_{ah} \) — reação, "assumida", uniformemente distribuída, sobre as arestas do corpo do silo, devido ao carregamento horizontal, KN/m

\( q_{sa} \) — esforço de arrancamento direto nos parafusos auto-atacantes, KN/m

\( q_{\text{sa1}} \) — solicitação lateral nos parafusos auto-atacantes na direção normal às fibras da madeira, KN/m.

Fig. 6.10. Solicitações nos parafusos auto-atacantes, da ligação das chapas compensadas aos pilares do silo, devido ao carregamento horizontal

b- Apoio nos anéis de enrijecimento

Os quinhões de carga nos anéis de enrijecimento, são obtidos pelos próprios anéis, em função da forma poligonal fechada que possibilita um auto-equilíbrio à pressão horizontal. (figura 6.11).

Fig. 6.11. Anéis de enrijecimento

\[ q_A = \left( r_{ah}^{\text{sup}} + r_{ah}^{\text{inf}} \right) \]

\[ l_A = \text{lado do hexágono dos anéis de enrijecimento, m} \]

\[ r_{ah}^{\text{sup}} = \text{reação, "assumida", uniformemente distribuída, devido ao quinhão de carga horizontal, sobre os anéis de enrijecimento do prisma hexagonal do corpo do silo, KN/m. Cada anel de enrijecimento fica sujeito à ação de duas reações, uma da chapa com pensada que está acima e outra da chapa que está abaixo.} \]

\[ q_A = \left( r_{ah}^{\text{sup}} + r_{ah}^{\text{inf}} \right) \]

\[ R_A = q_A \cdot l_A/2 \]

\[ R_A^* = R_A/ \text{sena} \]

\[ R_A^n = R_A/ \text{tga} \]

\[ N_A = R_A^* + R_A^n + N_A = 0.87 \cdot q_A \cdot l_A \]

\[ N_A = \text{tração axial, nas peças dos anéis de enrijecimento, devido à pressão horizontal, paralela às suas fibras, KN} \]

Fig. 6.12 - Tração nos anéis de enrijecimento

Observa-se que o esforço de tração, que surge em cada lado do anel hexagonal, deve-se a duas parcelas, uma de seu próprio quinhão de carga e outra dos quinhões de carga de seus lados adjacentes.
Construtivamente, estes anéis foram admitidos em madeira maciça, da espécie Peroba Rosa, de início na bitola 6 x 12 cm², montados conforme figura 6.13, através de ligações com parafusos passantes, porcas e arruelas.

Fig. 6.13. Detalhe da ligação parafusada entre os lados do anel de enrijecimento

Para o cálculo dos momentos fletores, cada lado do anel de enrijecimento foi considerado simplesmente apoiado, com carregamento uniformemente distribuído. As ligações parafusadas, teoricamente, foram admitidas como "rótulas".

Os espaçamentos entre os anéis, função da pressão horizontal do material ensilado e das características de resistência da chapa de madeira compensada funcionando como "placa", foram, inicialmente, admitidos, como mostra a figura 6.4.

O primeiro anel, a contar de baixo para cima (fig. 6.4), por razões construtivas, foi feito diferente dos demais, constituindo-se também na viga de sustentação da tremoña do silo, como é visto no item 6.3.1.2, e agora ilustrado pela figura 6.14.
Fig. 6.14. 1º anel de enriçamento - Viga de sustentação da tremonha do silo

Assim, o primeiro anel de enriçamento, forma-se por duas peças de madeira, compostas conforme a figura 6.14. O reforço transversal, deve-se à necessidade de uma maior rigidez nesta direção, devido às solicitações da tremonha do silo.

A análise dos efeitos produzidos pelo quinhão de carga devido à pressão horizontal, sobre esta viga em forma de anel, é feita junto com a análise da tremonha do silo.

Os parafusos auto-atarrazantes da ligação entre a chapa de madeira compensada do corpo do silo e a viga de sustentação da tremonha, devido à pressão horizontal, ficam sujeitos a arracamento direto (figura 6.15).
\( r_{Ah} \) - reação sobre o 1º anel de enrijeçamento, devido a pressão horizontal que atua sobre a 1ª chapa de compensado, KN/m

\( Q_{sa} \) - solicitação de arrancamento direto nos parafusos auto-atarraçantes da ligação, KN/m

Fig. 6.15. Ligação parafusada do compensado do corpo do silo com a viga de sustentação da tremonha

6.2.1.2- Carga tangencial - \( Q_t \)

As forças tangenciais à superfície provocam compressão na chapa de madeira compensada, e esta, desconsiderando os aspectos de compatibilidade de deslocamentos, característicos da hiperestaticidade da estrutura, foi admitida "rígida", transferindo tais cargas, em forma de quinhões para seus apoios, isto é, para os pilares do prisma hexagonal que compõe o corpo do silo. Originam-se, pois, reações, "assumidas", uniformemente distribuídas.

Os pilares, devido a estes quinhões de carga, ficam submetidos à compressão paralela às suas fibras. Como são contraventados ao longo de toda sua altura, pela disposição hexagonal das chapas de madeira compensada, admitiu-se, para fins de cálculos e verificações, funcionarem como peças curtas.

A ligação com parafusos auto-atarraçantes entre as chapas
de madeira compensada e os pilares, além dos esforços laterais perpendiculares às fibras dos pilares e ao arrancamento direto devidos à pressão horizontal (ver figura 6.10), fica também submetida, frente a estas cargas tangenciais, a esforços laterais paralelos às fibras dos pilares (figura 6.16).

![Diagrama mostrando cargas e esforços](image)

\[ q_{sl} = \sqrt{q_{sh}^2 + q_{sl}^2} \]

a) esforço lateral \( q_{sl} \)

b) arrancamento direto \( q_{sa} \)

\( q_{ah} \) e \( q_{pt} \) → reações, "assumidas", uniformemente distribuídas, sobre os pilares do corpo do silo, devido, respectivamente, à pressão horizontal e a carga tangencial, KN/m.

\( q_{sl}^X, q_{sl}^Y, q_{sl}^Z \) → esforços laterais nos parafusos auto-atarraxantes, respectivamente, nas direções paralela, normal e inclinada, em relação às fibras do pilar, KN/m

\( \beta \) → ângulo da resultante dos esforços laterais sobre os parafusos auto-atarraxantes e a direção das fibras do pilar → \( \tan \beta = \frac{q_{sl}^Y}{q_{sl}^X} \)

\( q_{sa} \) → esforço de arrancamento nos parafusos auto-atarraxantes da ligação entre as chapas de compensado e os pilares, KN/m

Fig. 6.16. Solicitações nos parafusos auto-atarraxantes da ligação entre o compensado e os pilares do corpo do silo
Para dar apoio ao corpo do silo, bem como à tremonha, como veremos mais adiante, os pilares internos na parte superior hexagonal prismática foram prolongadas externamente até as fundações (figura 6.17).

Fig. 6.17. Prolongamento dos pilares do silo

O prolongamento de cada pilar interno superior, deu-se, na parte inferior, por duas peças de Peroba Rosa, inicialmente admitidas com a bitola comercial 6 x 16cm³, recortadas e dispostas de
forma a possibilitar a montagem. A transição foi projetada com parafusos passantes, aproveitando o trecho comum as duas partes, entre os dois primeiros anéis de enrijecimiento. Estes parafusos também foram aproveitados para a ligação da chapa compensada aos pilares, substituindo, neste nível, os parafusos auto-atarraxantes.

6.2.2- Tremonha do silo

Acompanhando a forma hexagonal do corpo do silo, a tremonha, embora com as paredes inclinadas, portanto com seção transversal variável, foi projetada na forma poligonal, constituindo uma pirâmide (tronco de pirâmide) reta, invertida, de base hexagonal (figura 6.18).

Fig. 6.18. Tremonha piramidal do silo

Assim, as chapas de madeira compensada com a forma de
triângulos isósceles, conectadas ao longo de seus lados pelas arestas da pirâmide, feitas em madeira maciça, constituem uma estrutura espacial suspensa, ajustada ao corpo do silo, através de sua base hexagonal invertida.

A ação do peso próprio e do material armazenado sobre as paredes inclinadas da tremonha se agrava em relação ao considerado para as paredes verticais do corpo do silo, porquanto, além da carga horizontal e a carga de atrito, ter a tremonha, que sustentar o seu peso próprio, o peso do material nela contido e o peso do material contido no corpo do silo e não equilibrado pelo atrito junto às paredes verticais, isto é, peso de material que flutua sobre a tremonha, como já mencionado no capítulo 2.

Estas solicitações, se traduzem em dois tipos de carregamentos a serem absorvidos (figura 6.19): carga normal às chapas de madeira compensada; e carga tangencial às chapas de madeira compensada. Como a tremonha é suspensa, além da verificação de seus elementos aos carregamentos acima, é necessário verificar sua sustentação como um todo, ligado ao resto do silo.

\[ q_f = P_w + g_{2t} \]
\[ q_n = P_n + g_{2n} \]

Q_n \( + \) carga normal às paredes do silo, por m² de superfície, devido ao material ensilado, P_n, e o componente do peso próprio da tremonha do silo, nesta direção, g_{2n}

Q_t \( + \) carga tangencial às paredes do silo, por m² de superfície, devido ao atrito do material ensilado, P_w, e o componente do peso da tremonha, nesta direção, g_{2t}

Fig. 6.19 - Solicitações sobre as paredes da tremonha
6.2.2.1- Carga normal - $Q_n$

A carga normal à superfície da chapa triangular provoca flexão biaxial, "ação de placa", e esta transmite tal carga, em forma de quinhões para seus apoios, que são as arestas da pirâmide e a viga de sustentação da tremonha (figura 6.20).

$\gamma_{vn}$ → Reação,"assumida", uniformemente distribuída, sobre a viga de sustentação da tremonha, devido à carga normal, KN/m

$\gamma_{an}$ → reação,"assumida", uniformemente distribuída, sobre as arestas da pirâmide que constituem a tremonha do silo, devido à carga normal, KN/m

Fig. 6.20. Decomposição do carregamento normal

Como construtivamente, foram colocadas com as fibras de face na direção da altura, foi adotada uma das direções da flexão coincidente com as fibras de face e a outra perpendicular a esta (figura 6.21).

A exemplo do que foi feito para o cálculo dos momentos fletores das placas retangulares do corpo do silo (ver item 6.2.2.1), também aqui, devido à ortotropia da chapa compensada, foi utilizado um programa computacional, BATHE et al. (1974), que possibilitou a solução das placas triangulares por elementos finitos.
χ → direção das fibras de face da chapa de madeira compensada
y → direção normal às fibras de face da chapa de madeira compensada

l_x → dimensão da placa na direção das fibras de face do compensado, m
l_y → dimensão da placa na direção perpendicular às fibras de face do compensado, m

Fig. 6.21. Referências na placa de compensado, na flexão

No Anexo 3 encontram-se os quadros 4, 5 e 6, onde se pode obter os momentos fletores adimensionais, para carregamentos normais unitários, sobre placas triangulares com diferentes relações, ε = l_y/l_x, e diferentes condições de vinculação. Os momentos fletores para os carregamentos reais, podem facilmente serem obtidos, conforme indicações nas tabelas.

Neste tratamento à flexão das chapas de madeira compensada, os deslocamentos transversais de seus apoios, ou seja, das arestas inclinadas da pirâmide que constitui a tremonha do silo e da viga de sustentação desta tremonha, foram admitidos pequenos e, portanto, possíveis de serem desprezados.

Na transmissão do carregamento, sob forma de quinhões, para os apoios, não foi considerada a ortotropia das chapas, ficando estes quinhões determinados somente pela geometria e condições de
apoios das chapas compensadas, conforme os quadros 4, 5 e 6 do Anexo 3. Admitiu-se serem tanto os quinhões como as reações que os equilibram, uniformemente distribuídos ao longo dos apoios.

a- Apoios ao longo das arestas da pirâmide

As parcelas de carga nas arestas, transformam-se em cargas de tração paralelas ao plano das chapas de madeira compensada, ocorrendo então a "ação de chapa".

As cargas, horizontalmente, se auto-equilibram devido à forma poligonal fechada e à simetria da estrutura, como também, devido à simetria do carregamento, e na direção inclinada são transferidas para a viga de sustentação da tremonha.

As arestas foram consideradas rígidas, isto é, como apoios indeslocáveis, e as reações aí obtidas foram utilizadas como cargas em sentido contrário na estrutura, restabelecendo o carregamento inicial, já que os apoios na realidade não existem. Este procedimento é semelhante àquele dos processos simplificados de análise de folhas poliédricas (CILONI, 1984).

Estas cargas, então, são decompostas (figura 6.22), originando os efeitos de chapa. Observe-se que cada chapa de madeira compensada, devido à posição construtiva, inclinada, das arestas, fica submetida, simultaneamente, a esforços de tração longitudinal e transversal às suas fibras de face. A tração transversal deve-se a duas parcelas, uma de seu próprio carregamento e outra dos carregamentos das chapas que lhe são adjacentes.

Assim, as chapas triangulares, de madeira compensada, em relação a estes quinhões de carga normal a sua superfície, ficam sujeitas a esforços de tração, perpendiculares e paralelos a suas fibras de face (figura 6.23).
\[ r_{an}' = \frac{r_{an}}{\sin \theta} \] com componente de "\( r_{an}' \)" que causa tração transversal às fibras das chapas de compensado. Devido à forma hexagonal, esta parcela da reação decompõe-se em duas partes conforme corte "B", KN/m

\[ r_{an}'' = \frac{r_{an}}{\tan \theta} \] com componente de "\( r_{an}'' \)" que causa tração longitudinal às fibras das chapas de compensado, KN/m

\[ r_{an}''' = \frac{r_{an}}{\sin \theta \cdot \tan \theta} \] tração transversal às fibras da chapa de compensado considerada, KN/m

\[ r_{an}'''' = \frac{r_{an}}{\sin \theta \cdot \tan \theta} \] tração transversal às fibras da chapa de compensado considerada, KN/m

Fig. 6.22. Decomposição do carregamento normal a tremonha
a) tração normal

\[ \eta_{pn}^{y} = r_{an}^m + r_{an}^v = r_{an} (1 + \cos \alpha) / \text{sen} \alpha \cdot \text{sen} \theta + \eta_{pn}^{y} = 2,45 r_{an} \]

\[ \eta_{pn}^{y} \] tração na chapa compensada, normal às suas fibras de face, devido à carga normal, KN/m

\[ (\eta_{pn}^{x})_{\text{max}} = r_{an}^m \cdot 2 \cdot \frac{1_x}{1_y} = (2r_{an} \cdot 1_x) / (1_y \cdot \text{tg} \theta) + (\eta_{pn}^{x})_{\text{max}} = 2r_{an} \cdot \frac{1_x}{1_y} \]

\[ \eta_{pn}^{x} \] tração na chapa compensada, paralela às suas fibras de face, devido à carga normal KN/m. Variável linearmente, do valor máximo na base do triângulo, até zero no vértice do triângulo

Fig. 6.23. Trações na chapa de compensado da tremonha do silo, devido à carga normal

Da mesma forma que no corpo do silo, também na tremonha, as chapas de madeira compensada, funcionando como placas para absorver o carregamento normal à sua superfície, apoiam-se mutuamente pelas arestas, admitidas como rótulas, e originam carregamentos de tração em seus próprios planos.
As arestas da pirâmide, para se constituirem nos "apoios" das chapas triangulares, foram admitidas em madeira maciça, da espécie Peroba Rosa, inicialmente na bitola comercial 6 x 12cm², recortadas de maneira a possibilitar a montagem piramidal (fig. 6.24).

![](image)

\[ \alpha = \approx 45^\circ \]

\[ \text{DIM. (cm)} \]

\[ \text{CHAPA DE COMPENSADO} \]

\[ \text{ELEMENTO DE LIGAÇÃO MADEIRA MACIÇA (6 x 12)} \]

\[ \text{PARAFUSOS AUTO-ATARRAXANTE} \]

\[ \alpha' \] ângulo externo entre as chapas de compensado, no plano normal às suas superfícies

Fig. 6.24. Elemento de ligação das chapas de madeira compensada na tremonha

Assim, devido à pressão normal, exercida pelo material ensilado, estes elementos de ligação dos compensados, ficam submetidos a esforços de tração, transversais a suas fibras. Esforços estes, pequenos e suscetíveis de serem deprezados, visto as dimensões mínimas, normativas, necessárias a eles, devido à cravação dos parafusos auto-atarrazantes de ligação das chapas de compensado.

Estes parafusos auto-atarrazantes ficam solicitados, simultaneamente a esforços laterais, inclinados em relação às fibras dos elementos de ligação e ao arrancamento direto (figura 6.25).
a) esforço lateral

\[ \tau_{an} = \text{reação, "assumida", uniformemente distribuída, sobre as arestas da pirâmide que constitui a tremonha do silo, devido ao carregamento normal, KN/m} \]

\[ \beta = \text{ângulo construtivo, entre a direção das fibras do elemento de ligação e a direção "X" do carregamento} \]

\[ \beta_0 = 12^\circ \]

\[ Q_{sl}^{0}, Q_{sl}^0 = \text{esforços laterais inclinados, nos parafusos auto-atarraxantes, KN/m} \]

\[ Q_{sl}^\beta = \text{esforço lateral resultante, nos parafusos auto-atarraxantes, na direção inclinada em relação às fibras do elemento de ligação da tremonha do silo, KN/m} \]

\[ \beta = \text{ângulo da resultante dos esforços laterais sobre os parafusos auto-atarraxantes e a direção das fibras do elemento de ligação da tremonha} \]

\[ \beta_0 + \beta' + \beta = 80^\circ \]

\[ Q_{sa} = \text{esforço de arrancamento nos parafusos auto-atarraxantes da ligação entre as chapas de compensado e os elementos de ligação na tremonha do silo, KN/m} \]

Fig. 6.25. Esforços nos parafusos auto-atarraxantes de ligação das chapas de compensado nas arestas da tremonha do silo
b- Apoio ao longo da viga de sustentação da tremonha

Os quinhões de carga normal aos compensados da tremonha, que vão para a viga de sustentação, devido à forma inclinada do apoio, são diretamente absorvidos por esta, conforme mostra a figura 6.26, provocando-lhe esforços de flexão.

\[ r_{vn} \text{ reação, "assumida", uniformemente distribuída, sobre a viga de sustentação da tremonha, devido a carga normal, kN/m} \]

Fig. 6.26. Quinhão de carga normal na viga de sustentação da tremonha

Na análise de placa das chapas de compensado triangulares, este apoio inclinado na viga de sustentação da tremonha foi considerado como "engaste", dado que, o peso de material existente sobre ele, teoricamente, tende a impedi o giro da extremidade das chapas de madeira compensada.

Além da flexão, a viga de sustentação da tremonha, mediante o carregamento normal das chapas de madeira compensada, fica sujeita a uma parcela de carga, na direção do plano da chapa (travão longitudinal na chapa), decorrente da decomposição inclinada dos quinhões de carga que vão para as arestas da pirâmide (item 6.2.2.1-a).

Ademais, os parafusos da ligação entre as chapas triangulares e a viga de sustentação da tremonha, são solicitados lateralmente, na direção perpendicular às fibras da viga (figura 6.27).
Fig. 6.27. Esforço lateral nos parafusos auto-atarraxantes da viga de sustentação da tremonha, devindo ao carregamento normal

A análise da sustentação e consequentemente da viga de sustentação da tremonha foi feita em função do carregamento total que atua sobre ela, não fazendo uso das decomposições anteriores (item 6.2.2.3-a).

6.2.2.2- Carga Tangencial - $Q_t$

A carga tangencial à superfície, provoca tração na chapa de madeira compensada, "ação de placa", e esta transmite tal carga, para seu apoio, que é a viga suporte da tremonha, conforme fig. 6.28, originando reações, "assumidas", uniformemente distribuídas.

$\gamma_v t$ + reação, "assumida", uniformemente distribuída, sobre a viga de sustentação da tremonha, devido a carga tangencial, KN/m

Fig. 6.28. Carregamento tangencial na tremonha
As chapas de madeira compensada, em relação ao carregamento tangencial a sua superfície, ficam sujeitas a esforços de tração paralelos às suas fibras de face (figura 6.29).

\[ n_{pt}^{x} \] tração na chapa compensada, paralela às suas fibras de face, devido às cargas tangenciais, KN/m. Variável linearmente, de zero até o valor máximo, \( r_{vt} \).

Fig. 6.29. Tração longitudinal na chapa triangular de compensado, devido ao carregamento tangencial.

Os parafusos da ligação entre as chapas triangulares e a viga de sustentação da tremonha, já solicitados a esforço lateral (figura 6.27), devido ao carregamento normal à chapa, ficam ainda mais solicitados com este carregamento tangencial (figura 6.30).

Fig. 6.30. Esforço lateral nos parafusos auto-atarraxantes da viga de sustentação da tremonha.
A exemplo do que ocorreu com o carregamento normal às cha-
pas de compensado, também o efeito do carregamento tangencial so-
bre a viga de sustentação da tremonha, é englobado pela análise do
carregamento total que atua sobre ela (ver item 6.2.2.3).

6.2.2.3- Sustentação da tremonha

A sustentação da tremonha baseia-se em seu próprio peso, no pe-
so do material nela contido e no peso do material contido no corpo do si-
lo e não equilibrado pelo atrito junto às paredes verticais, isto é, na
carga sobre o fundo do corpo do silo. Assim, a força vertical de susten-
tação da tremonha é determinada, independentemente das sobrepressões
devidas ao material ensilado, conforme a fig. 6.31. Eventuais impac-
tos, devido a caída de abóbadas, formadas no material ensilado, são
considerados através da carga vertical no fundo do silo, \( p_b \), já devida-
mente majorada, prevenindo estas ações.

\[
\begin{align*}
q_{\text{sust}}^v &= \frac{p_b \cdot A + G_{\text{mat}} + G_2}{u_v} \\
A &= \text{área interna da seção transversal hexagonal do corpo do silo, m}^2 \\
u_v &= \text{perímetro médio da viga anelar de sustentação da tremonha} \\
p_b &= \text{carga vertical no fundo, por m}^2 \text{ de superfície, do corpo do silo, KN/m}^2 \\
G_{\text{mat}} &= \text{peso do material contido na tremonha, KN} \\
G_2 &= \text{peso próprio da tremonha, KN} \\
q_{\text{sust}}^v &= \text{força vertical de sustentação da tremonha, por metro de pé-
rímetro de sua base hexagonal, KN/m}
\end{align*}
\]

Fig. 6.31. Sustentação vertical da tremonha
Esta solicitação provoca flexão vertical na viga de sustentação da tremonha. Além disto, como os carregamentos da tremonha se transmitem, através das chapas inclinadas de madeira compensada, a viga de sustentação também fica sujeita à flexão horizontal (figura 6.32).

$q_{sust}^t$ → componente da força de sustentação da tremonha na direção tangencial, KN/m

$q_{sust}^h$ → componente da força de sustentação da tremonha na direção horizontal, KN/m, provoca flexão horizontal na viga de sustentação.

Fig. 6.32. Decomposição da força de sustentação da tremonha

Como a viga também atua como anel de enrijecimento do corpo do silo, ver item 6.2.1.1-b, além destas ações de sustentação da tremonha, fica sujeita à carga horizontal da primeira chapa de compensado do corpo do silo (figura 6.33).

$r_{Ah}$ → reação sobre o 1º anel de enrijecimento, devido à carga horizontal da 1ª chapa de compensado, KN/m

$\theta = 45^\circ$ → $q_{sust}^h = q_{sust}^v$

$q_{v}^h, q_{v}^v$ → cargas sobre a viga de sustentação da tremonha, respectivamente, na horizontal e na vertical, KN/m

Fig. 6.33. Carregamento sobre a viga de sustentação da tremonha do silo
a- Apoio para o carregamento horizontal

As parcelas horizontais do carregamento são absorvidas pela própria viga de sustentação da tremonha, em função de sua forma poligonal fechada, possibilitando um auto-equilíbrio às cargas.

Cada lado da viga, recebendo seu carregamento, fica submetido à flexão e busca reação em seus lados vizinhos. Assim, fica também, sujeito à compressão axial (figura 6.34).

\[ l_v \rightarrow \text{lado do hexágono da viga de sustentação da tremonha, m} \]

\[ R_v^h = \frac{q_v^h \cdot l_v}{2} \]

\[ R_v'' = R_v^h \cdot \frac{1}{\sin \alpha} \]

\[ R_v''' = R_v^h \cdot \frac{1}{\tan \alpha} \]

\[ N_v = - (R_v'' + R_v''') \rightarrow N_v = -0,87 q_v^h \cdot l_v \]

\[ N_v \rightarrow \text{Compressão axial na viga de sustentação da tremonha} \]

Fig. 6.34- Compressão na viga de sustentação da tremonha
Observe-se que o esforço de compressão axial que surge em cada peça da viga de sustentação, deve-se a duas parcelas, uma de seu próprio carregamento e outra dos carregamentos de suas peças adjacentes.

Para o cálculo dos momentos fletores horizontais, cada lado do hexágono, que constitui a viga de sustentação da tremonha, foi considerado engastado em suas extremidades, com carregamentos uniformemente distribuídos. A consideração de engaste, deve-se ao formato hexagonal do perímetro da viga e aos pilares do silo, que, teoricamente, impedem os giros dos extremos das peças.

b- Apoio para o carregamento vertical

As parcelas verticais dos carregamentos são transferidas aos pilares externos do silo, através do apoio direto da viga de sustentação da tremonha em entalhes feitos nos pilares e auxílio de parafusos passantes, porcas e arruelas (figura 6.35).

![Diagrama 6.35](image_url)

Fig. 6.35. Apoio da viga de sustentação da tremonha nos pilares

Os pilares, já submetidos à compressão paralela às suas fibras, devido ao atrito do material ensilado com as paredes verticais e devido ao peso próprio do corpo do silo e da cobertura, ficam
ainda mais comprimidos, em decorrência da sustentação da tremonha, transferindo todos estes carregamentos para as fundações.

Para o cálculo dos momentos fletores verticais, cada lado do anel, que constitui a viga de sustentação da tremonha foi considerado simplesmente apoiado, com carregamentos uniformemente distribuídos.

6.2.3- Cobertura do silo

A estrutura, para apoiar as telhas de cimento amianto, foi admitida em quatro terças de madeira maciça da espécie Peroba Rosa, inicialmente na bitola 6 x 12 cm², dispostas como mostra a figura 6.36, e recortadas de forma a possibilitar o caimento desejado na cobertura.

Os pilares internos do silo foram prolongados, o necessário, para permitirem o apoio destas terças, e também a instalação de uma abertura de visita ao interior do silo.

As ligações com os pilares, foram admitidas com parafusos passantes, porcas e arruelas para as terças do beiral, e parafusos auto-ataxaxantes com cantoneiras metálicas para as terças da cumeira.

Fig. 6.36. Cobertura do silo
6.2.4 - Fundações do silo

O tipo de fundação a ser utilizado, depende basicamente, das condições locais e das características da estrutura.

Para silos verticais, a previsão de fundação por sapatas individuais pode ser perigosa, visto os assentamentos diferenciais que podem ocorrer e pelos momentos fletores, que ocasionam excentricidades nas sapatas.

No silo de madeira compensada em estudo, embora estes aspectos de recalques diferenciais não representem maiores problemas, devido à capacidade da estrutura em absorvê-los, a solução por sapatas individuais, também não é a melhor solução, em consequência das dimensões reduzidas do hexágono.

Assim, talvez, a melhor solução seja um bloco circular contínuo de concreto armado sob o silo, o qual, além de servir de fundação, pode ser usado como plataforma de trabalho.

Com o objetivo de possibilitar a verificação do conjunto à ação do vento, as dimensões deste bloco, foram pré-fixadas em 3,5m de diâmetro e 0,50m de altura. Dimensões estas, que deverão ser verificadas para cada caso, em função da resistência do solo.

6.3 - Cálculos e Verificações dos Elementos do Silo

Definida a geometria do silo, na sequência apresenta-se os cálculos e verificações de seus elementos, em função das condições de utilização. A determinação da magnitude e distribuição dos carregamentos atuantes sobre seus pararmos deu-se em função da ação de seu peso próprio e do material ensilado e da ação do vento, responsáveis, neste projeto, pelo dimensionamento.

Como as dimensões dos diversos elementos do silo foram previamente fixadas, são feitas duas verificações: uma, em que cada elemento tem suas dimensões prévias e ligações, verificadas aos esforços provenientes das ações de peso próprio e do material ensilado, e outra, em que a estrutura do silo, como um todo, é verificada a ação do vento.

6.3.1 - Verificação a ação do peso próprio e do material ensilado

O peso da cobertura foi admitido distribuído pelos seis
pilares do corpo do silo, que lhes propiciam apoio. Para verificação das terças, foi admitido, uniformemente distribuído pelo comprimento total de terças.

- telha de cimento amianto (7m² x 0,18KN/m²) ... 1,26KN
- terças de 6 x 12cm² (9ml x 0,06KN/m) ........ 0,54KN
- parafusos e arruelas (10%) .................... 0,18KN
- peso total (Cobertura + G₃) .................. 1,98KN
- peso da cobertura por pilar .................... 0,33KN
- peso da cobertura por metro de terça (G₃) ....... 0,22KN

O peso do corpo do silo, para efeito de verificação dos pilares, foi distribuído uniformemente pela área lateral.

- chapas de compensado (54m² x 0,11KN/m²) .... 5,94KN
- anéis de enrijeimiento (88ml x 0,06KN/m²) .... 5,28KN
- pilares internos (45ml x 0,06KN/m²) .......... 2,70KN
- parafusos, porcas e arruelas (10%) ........... 1,40KN
- peso total (corpo do silo + G₁) ............... 15,32KN
- peso por m² de superfície lateral (G₁) ...... 0,28KN/m²
- peso total, por pilar interno ................. 2,55KN

Para as verificações das chapas compensadas e suas ligações com os pilares, usou-se apenas o peso próprio da chapa 0,11 KN/m².

O peso próprio da tremonha foi considerado de forma concentrada para verificação de sua sustentação, como um todo, em relação ao resto do silo e como carga uniformemente distribuída pelas paredes inclinadas, para a verificação das chapas de madeira compensada e demais elementos, conforme figura 6.37.

- chapa de compensado (0,5m² x 0,11KN/m²) ...... 0,61KN
- viga de sustentação (7ml x 0,15KN/m) ........ 0,70KN
- elemento de ligação (8,5ml x 0,5KN/m) ....... 0,43KN
- boca de saída (chapa metálica) ............... 0,14KN
- parafusos e arruelas (10%) ................... 0,19KN
- peso total (Tremonha + G₂) .................. 2,07KN
Fig. 6.37. Decomposição do peso próprio nas paredes da tremonha do silo

Sendo a superfície inclinada das paredes da tremonha, em torno de 5,5m², os componentes unitários do peso próprio foram considerados como:
- componente normal do peso, por m² de superfície das paredes da tremonha (G₂n) ............... 0,27KNI/m²
- componente tangencial do peso, por m² de superfície das paredes da tremonha (G₂t) ........... 0,27KNI/m²

Na análise da ação do material armazenado sobre o silo, foram utilizadas as recomendações da norma alema DIN 1055-86 (ver capítulo 2), onde as dimensões e a forma hexagonal prismática deste, foi considerada como mostra a figura 6.38.

- raio hidráulico + $\Gamma_H$

$\Gamma_H = \frac{A}{U}$

área + $A = 3.1^2 \cdot \text{tg} \alpha / 2$

perímetro + $U = 6.1$

$\Gamma_H = 1 \cdot \text{tg} \alpha / 4 + \Gamma_H = 0,52$m

- relação altura/diâmetro $H/D$

diâmetro equivalente $D$

$\pi D^2 / 4 = A + D = 2 \sqrt{A / \pi}$

$H/D = 3,75$

Fig. 6.38. Dimensões do silo hexagonal - Raio hidráulico e relação altura/diâmetro
Para a adoção das características físicas do material armazenado, necessárias à determinação da magnitude e distribuição das solicitações sobre as paredes do silo, dentre os cereais, esco­lheu-se a soja, por representar, junto com o milho, cerca de 70% da produção nacional anual de grãos, estimada em 50.000.000 de toneladas.

As culturas de soja e milho possuem safras com períodos coincidentes e caracterizam-se em grande parte, por pequenas propriedades, com a participação direta do produtor. A soja, por vários fatores, entre os quais, os aspectos creditícios para a produção, os incentivos governamentais, a tecnologia adotada, a estrutura de comercialização com destino ao parque industrial interno ou exportação direta dos grãos, apresenta-se num estágio mais desenvolvido, de grande expressão econômica para a nação, onde as preocupações com a qualidade do armazenamento e conservação dos grãos são fundamentais.

Assim, do quadro 2.2 do capítulo 2 (tabela 1 do Apêndice da norma alemã, DIN 1055, 1986), tem-se:

- peso específico da soja ......................... \( \gamma = 8,0 \text{KN/m}^3 \)
- relação \( \lambda = \frac{D_h}{D_v} \) ......................... \( \lambda = 0,7 \)
- coeficiente de atrito entre a soja e a parede da tremonha ................................. \( \mu = 0,25 \)

Por ser o material das paredes da tremonha chapas de madeira compensada, revestidas com tegofilm, foi utilizado nos cálculos o coeficiente de atrito referente às superfícies revestidas.

Pelo formato hexagono-piramidal da tremonha, pela sua inclinação em relação a horizontal (\( \theta = 45^\circ \)) e pelo coeficiente de atrito entre a soja e a parede compensada da tremonha do silo (\( \mu = 0,25 \)), na figura 2.12-a do capítulo 2, constata-se ter a soja quando em escoamento dentro da célula, a previsão de um fluxo de funil.

As pressões sobre as paredes do corpo do silo, decorre­tes da ação do material ensilado, atingem seus valores máximos para a condição de descarregamento do silo e podem ser determinadas como mostrado no item 2.2 do capítulo 2.
Pressão horizontal - \( P_{hd} = P_{hc} \cdot e_h \cdot k \)

\[ P_{hc} = \frac{\gamma \cdot \gamma_H}{\mu} (1 - e^{-Z(\lambda_H/\gamma_H)}) + P_{hc} = 16.64(1 - e^{-0.34Z}) \text{ KN/m}^2 \]

\( e_h \) = coeficiente de descarga, obtido no quadro 2.2 do capítulo 2, para a soja = \( e_h = 1.4 \)

\( k \) = coeficiente de correção da pressão horizontal devido as irregularidades que possam ocorrer na descarga. Para silos de seção poligonal, pode ser obtido por:

\[ k = 1 + 0.8\beta \cdot k = 1.18 \]

\( \beta \) = coeficiente empírico, devido a não uniformidade do carregamento

\[ \beta = \beta_h \cdot \beta_a \cdot \beta_r \cdot \beta_G \quad \Rightarrow \beta = 0.23 \]

onde os valores de \( \beta_h, \beta_a, \beta_r \) e \( \beta_G \) são obtidos como mostrado no capítulo 2:

- \( \beta_h \) = coeficiente de esbeltez do silo
  \[ \beta_h = 0.2 \frac{H}{D} + 0.8 + \beta_h = 1.54 \]

- \( \beta_a \) = coeficiente de excentricidade
  \[ \beta_a = 1 \] (boca de saída centrada)

- \( \beta_r \) = coeficiente de rigidez do silo
  \[ \ell/t \leq 70 + \beta_r = 0.3 \]

- \( \beta_G \) = coeficiente do material armazenado
  \[ \beta_G = 0.5 \] (quadro 2.2, para a soja)

\( P_{hd} \) = carga horizontal por m² de superfície vertical de parede, para a condição de descarregamento do silo:

\[ P_{hd} = 27.50 (1 - e^{-0.34Z}) \text{ KN/m}^2 \]
Na figura 6.39 estão os valores de $P_{hd}$, segundo sua variação exponencial, para diversas alturas do corpo do silo, onde ocorrem os apoios das chapas compensadas.

<table>
<thead>
<tr>
<th>Z (m)</th>
<th>$P_{hd}$ (KN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6,62</td>
</tr>
<tr>
<td>0,81</td>
<td></td>
</tr>
<tr>
<td>1,62</td>
<td>11,65</td>
</tr>
<tr>
<td>2,44</td>
<td>15,50</td>
</tr>
<tr>
<td>3,25</td>
<td>18,39</td>
</tr>
<tr>
<td>4,06</td>
<td>20,59</td>
</tr>
<tr>
<td>4,88</td>
<td>22,27</td>
</tr>
<tr>
<td>5,69</td>
<td>23,53</td>
</tr>
<tr>
<td>6,50</td>
<td>24,48</td>
</tr>
<tr>
<td>7,32</td>
<td>25,22</td>
</tr>
</tbody>
</table>

3ª CHAPA

2ª CHAPA

1ª CHAPA

Fig. 6.39. Pressão horizontal nas paredes do corpo do silo

Para facilitar os cálculos e verificações, estes valores exponenciais foram substituídos por valores médios, constantes entre apoios consecutivos das chapas compensadas (figura 6.40).

<table>
<thead>
<tr>
<th>Z (m)</th>
<th>$P_{h}$ (KN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3,31</td>
</tr>
<tr>
<td>0,81</td>
<td>9,14</td>
</tr>
<tr>
<td>1,62</td>
<td>13,56</td>
</tr>
<tr>
<td>2,44</td>
<td>16,95</td>
</tr>
<tr>
<td>3,25</td>
<td>19,50</td>
</tr>
<tr>
<td>4,06</td>
<td>21,43</td>
</tr>
<tr>
<td>4,88</td>
<td>22,90</td>
</tr>
<tr>
<td>5,69</td>
<td>24,00</td>
</tr>
<tr>
<td>6,50</td>
<td>24,85</td>
</tr>
<tr>
<td>7,32</td>
<td></td>
</tr>
</tbody>
</table>

3ª ANEL

2ª ANEL

1ª ANEL

5ª ANEL

4ª ANEL

3ª ANEL DE ENRUECIMIENTO

Fig. 6.40. Pressão horizontal média nas paredes verticais do silo
Pressão de Atrito - \( P_{wd} = 1,1 \cdot P_{wc} \)

\( P_{wc} \) = pressão de atrito na parede, por \( m^2 \) de superfície, para a condição estática de carregamento do silo

\[
P_{wc} = \gamma \cdot \Gamma_{H} \left( 1 - e^{-Z(\lambda_{u}/\Gamma_{H})} \right) + P_{wc} = 4,2 \left( 1 - e^{-0,34Z} \right) \text{ KN/m}^2
\]

\( P_{wd} \) = pressão de atrito na parede, por \( m^2 \) de superfície, para a condição de descarregamento do silo

\[
P_{wd} = 1,1 \cdot P_{wf} \quad \rightarrow \quad P_{wd} = 4,6 \left( 1 - e^{-0,34Z} \right) \text{ KN/m}^2
\]

Na figura 6.41 estão os valores de \( P_{wd} \), segundo sua variação exponencial, para diversas alturas, onde ocorrem os apoios das chapas compensadas.

<table>
<thead>
<tr>
<th>Z (m)</th>
<th>P_{wd} (KN/m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,81</td>
<td>16,6</td>
</tr>
<tr>
<td>1,62</td>
<td>2,91</td>
</tr>
<tr>
<td>2,44</td>
<td>3,88</td>
</tr>
<tr>
<td>3,25</td>
<td>4,60</td>
</tr>
<tr>
<td>4,06</td>
<td>5,15</td>
</tr>
<tr>
<td>4,88</td>
<td>5,57</td>
</tr>
<tr>
<td>5,69</td>
<td>5,88</td>
</tr>
<tr>
<td>6,50</td>
<td>6,12</td>
</tr>
<tr>
<td>7,32</td>
<td>6,30</td>
</tr>
</tbody>
</table>

Fig. 6.41. Pressão de atrito nas paredes verticais do silo

Para efeito da verificação à compressão dos pilares do silo, bem como de suas ligações, determinou-se a carga total de atrito, por metro de parede do corpo do silo:

\[
Q_{w,z} = \int_{0}^{Z} P_{wd} \cdot dZ = \int_{0}^{Z} 4,6 \left( 1 - e^{-0,34Z} \right) dZ
\]

\[
Z = h = 7,32m \quad \rightarrow \quad Q_{w} = 21,23 \text{ KN/m}
\]
E a fim de verificar as ligações parafusadas entre estas chapas compensadas e os pilares, admitiu-se estas cargas de atrito com valores médios conforme a figura 6.42.

![Diagrama de pressão de atrito média nas paredes verticais do silo](image)

**Fig. 6.42. Pressão de atrito média nas paredes verticais do silo**

O carregamento sobre o fundo da parte vertical do silo, pode ser considerado constante sobre toda a superfície e calculado, conforme o item 2.2.3-e do capítulo 2.

**Pressão no Fundo**

\[ P_b = \varepsilon_b \cdot P_{vd} \leq \gamma \cdot h \]

\( \varepsilon_b \) = coeficiente de sobrepressão no fundo do silo

Para a soja \( \varepsilon_b = 1,5 \)

O coeficiente \( \varepsilon_b \) corrige o carregamento sobre o fundo do silo devido à possibilidade de caídas de abóbadas eventualmente formadas no meio de massa sólida armazenada. Trata-se pois, de um coeficiente de majoração das cargas verticais decorrentes de prováveis ações rápidas para as quais a madeira pode ter sua resistência de cálculo aumentada (ABNT-NBR 7190, 1982). Assim, este coeficiente foi reduzido em 50%, sendo adotado igual a \( \varepsilon_b = 1,25 \).
\[ \rho_{vc} \] pressão vertical, por m² de superfície transversal do silo, para a situação de carregamento

\[ \rho_{vc} = \frac{\gamma \cdot r_H}{\lambda \cdot \mu} (1 - e^{-Z(\lambda \mu / r_H)}) + \rho_{vc} = 21,75\text{KN/m}^2 \]

\[ \rho_b \] pressão vertical no fundo da parte vertical do silo, por m² de superfície da seção transversal, para a situação de des-carregamento

\[ \rho_b = \epsilon_b \cdot \rho_{vc} \leq \gamma \eta \rightarrow \rho_b = 27,18\text{KN/m}^2 < 58,56\text{KN/m}^2 \]

**Cargas na tremonha**

As cargas sobre as paredes da tremonha do silo decorrentes da ação do material ensilado, constituem-se de duas parcelas, uma devido ao material contido na tremonha e outra do material que está acima (ver capítulo 2, item 2.2.3-e).

As parcelas devido ao material contido na tremonha são mostradas na figura 6.43.

\[ \rho_n = 2,4 \cdot r_H \cdot \lambda \cdot \text{sen}^2 \theta / \sqrt{\mu} \rightarrow \rho_n = 7,00\text{KN/m}^2 \]

\[ \rho_w = \frac{\rho_n}{2} \rightarrow \rho_w = 3,50\text{KN/m}^2 \]

Fig. 6.43. Parcelas das cargas nas paredes da tremonha, devido ao material dentro da tremonha

As parcelas devido ao material que está acima da tremonha, são mostradas na figura 6.44.
\[ P_{no} = (P_{vc} \cdot \varepsilon_b \cdot \cos^2 \theta + P_{hc} \cdot \sin^2 \theta) \left(1 + \frac{\sin^2 \theta}{4} \right) \rightarrow P_{no} = 42,42\text{KN/m}^2 \]

\[ P_{nu} = P_{vc} \cdot \varepsilon_b \cdot \cos \theta \rightarrow P_{nu} = 13,60\text{KN/m}^2 \]

\[ P_{wo} = P_{no}/2 \rightarrow P_{wo} = 21,21\text{KN/m}^2 \]

\[ P_{wo} = P_{nu}/2 \rightarrow P_{wu} = 6,80\text{KN/m}^2 \]

Fig. 6.44. Parcelas das cargas nas paredes da tremonha, devido ao material que está acima da tremonha.

Para facilitar as verificações dos elementos da tremonha, tais cargas sobre as paredes da tremonha, foram consideradas uniformemente distribuídas, com valores médios conforme a figura 6.45.

\[ P_n = 36,26\text{KN/m}^2 \rightarrow \text{média dos valores das figuras 6.44 e 6.43} \]

\[ P_n = \frac{P_n}{2} \rightarrow P_w = 18,13\text{KN/m}^2 \]

Fig. 6.45. Cargas médias sobre as paredes da tremonha do silo, devido ao material ensilado.
6.3.1.1. Verificação dos elementos e ligações do corpo do silo

a- Verificação das chapas de madeira compensada

Por terem sido consideradas "rigidas" em relação ao carregamento tangencial, transmitindo-o diretamente aos pilares, as chapas de compensado são verificadas, quanto aos aspectos de tensões e deslocamentos, somente às ações devidas ao carregamento horizontal (ver item 6.2.1).

As tensões máximas, devido à flexão biaxial e à tração normal as fibras, são compostas e comparadas, em cada direção, com as características de resistência das chapas de madeira compensada, obtidas no capítulo 5, item 5.1.

--- limite de cada chapa compensada
----- linha de apoio das chapas compensadas

Fig. 6.46. Apoios das chapas compensadas do corpo do silo
O quadro 6.1 apresenta os valores máximos para os momentos fletores e tensões de flexão naschapas verticais de madeira compensada, em função do carregamento horizontal, obtidos a partir dos quadros 2 e 3 do Anexo 3.

A condição de vinculação das placas foi estabelecida em função da rigidez de seus apoios. Assim, junto aos pilares, onde a ligação ocorre por uma linha de parafusos auto-atarraxantes, foi considerado apoio simples (rótula) e junto aos anéis de enrije-mento, foi considerado engaste, quando a chapa de compensado apresenta continuidade sobre o apoio e apoio simples, quando a chapa compensada é interrompida sobre este (figura 6.46).

As tensões atuantes nas placas foram obtidas pela rela-ção entre momento fletor e o momento resistente da placa, que por unidade de comprimento vale \( \varepsilon^2/6 \), onde "\( \varepsilon \)" é a espessura da cha-pa de compensado.

Analizando os valores destas tensões de flexão, vê-se, que devido a "ação de placa", as tensões na direção "\( \chi \)", paralela às fibras de face do compensado, atingem valores máximos, em alguns placas, pouco superiores ao valor admissível, obtido no capítulo 5. Na direção perpendicular às fibras, as tensões se mantêm abaixo do valor admissível.

O quadro 6.2, apresenta as reações das placas sobre seus apoios, admitindo, como já mencionado no item 6.2.1.1, a distribui-ção do carregamento por quinhões e as reações uniformemente dis-tri-buídas ao longo destes apoios.

A reação nas arestas, devido à carga horizontal, \( F_{\text{ah}} \), pro-voca tração transversal às fibras de face das chapas compensadas. Do item 6.2.1.1-a, fig. 6.8, sabe-se que esta tração vale \( \eta_{\chi} = 1.73 \ F_{\text{ah}} \). O quadro 6.3, apresenta os valores desta tração e as respectivas ten-sões em cada chapa vertical.

Embora estes esforços de chapa mostrem-se muito pequenos se comparados com os de placa, a composição de ambos, bem como o procedimento da verificação das chapas de madeira compensada, en-con-tram-se no quadro 6.4. Na direção "\( \chi \)", tem-se somente esforços de flexão e na direção "\( y \)" aparecem esforços de flexão e tração.
<table>
<thead>
<tr>
<th>Placa</th>
<th>Croqui</th>
<th>( \Delta_{px} ) m</th>
<th>( \Delta_{py} ) m</th>
<th>( I_{xx} ) x 10^-3</th>
<th>( I_{yy} ) x 10^-3</th>
<th>( I_{xy} )</th>
<th>( M_{xx} ) XM.m/m</th>
<th>( M_{yy} ) XM.m/m</th>
<th>( M_{xy} ) XM.m/m</th>
<th>( e_{xx} ) pC</th>
<th>( e_{yy} ) pC</th>
<th>( e_{xy} ) pC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C</td>
<td>3,31</td>
<td>-1,50</td>
<td>-0,685</td>
<td>0,640</td>
<td>0,159</td>
<td>-0,14</td>
<td>0,13</td>
<td>0,13</td>
<td>0,03</td>
<td>2,41</td>
<td>0,56</td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>9,14</td>
<td>-1,50</td>
<td>-0,419</td>
<td>0,422</td>
<td>0,106</td>
<td>-0,25</td>
<td>0,25</td>
<td>0,25</td>
<td>0,06</td>
<td>5,19</td>
<td>1,11</td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>13,38</td>
<td>-1,50</td>
<td>-0,685</td>
<td>0,640</td>
<td>0,159</td>
<td>-0,58</td>
<td>0,54</td>
<td>0,60</td>
<td>0,14</td>
<td>11,11</td>
<td>2,60</td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>16,95</td>
<td>-1,50</td>
<td>-0,685</td>
<td>0,640</td>
<td>0,159</td>
<td>-0,72</td>
<td>0,68</td>
<td>0,73</td>
<td>0,17</td>
<td>13,52</td>
<td>3,15</td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>19,50</td>
<td>-1,50</td>
<td>-0,419</td>
<td>0,422</td>
<td>0,106</td>
<td>-0,94</td>
<td>0,54</td>
<td>0,56</td>
<td>0,14</td>
<td>10,00</td>
<td>2,60</td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>21,43</td>
<td>-1,50</td>
<td>-0,685</td>
<td>0,640</td>
<td>0,159</td>
<td>-0,92</td>
<td>0,85</td>
<td>0,95</td>
<td>0,21</td>
<td>17,59</td>
<td>3,89</td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>22,80</td>
<td>-1,50</td>
<td>-0,685</td>
<td>0,640</td>
<td>0,159</td>
<td>-0,98</td>
<td>0,91</td>
<td>0,99</td>
<td>0,23</td>
<td>18,33</td>
<td>4,30</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>24,60</td>
<td>-1,50</td>
<td>-0,419</td>
<td>0,422</td>
<td>0,106</td>
<td>-0,66</td>
<td>0,66</td>
<td>0,66</td>
<td>0,17</td>
<td>12,22</td>
<td>3,15</td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>24,83</td>
<td>-1,50</td>
<td>-0,685</td>
<td>0,640</td>
<td>0,159</td>
<td>-0,93</td>
<td>0,87</td>
<td>0,95</td>
<td>0,22</td>
<td>17,59</td>
<td>4,07</td>
<td></td>
</tr>
</tbody>
</table>

1 - carregamento horizontal, normal a superfície das placas compensadas, dado na figura 6.40
2 - momentos fletores admissíveis máximos devido a carregamentos unitários sobre placas de dimensões relativas, c, obtidos dos quadros 2 e 3 do Anexo 3
3 - momentos fletores atuantes nas placas, devido ao carregamento horizontal, obtidos dos momentos unitários \( e = \Delta_{px} \cdot \Delta_{py} \)
4 - momentos no vão da placa; \( M_{xx}, M_{yy}, M_{xy} \) - momento no engaste, sobre o apoio
5 - momentos compensadores sobre os apoios, tomados igual a média dos valores calculados para cada placa, com valor mínimo de 80% do maior dos valores
6 - momentos corrigidos em função da compensação dos momentos de engaste, se forem corrigidos os do 1a do onde o momento no engaste foi diminuído
7 - tensão de flexão máxima na placa de madeira compensada, devido ao carregamento horizontal \( \sigma_{y} = 6 \cdot 10^{6} \cdot \text{g/cm}^{2} \), onde \( \sigma \) = 0,016m (espessura da chapa); \( \sigma_{x}, \sigma_{y} \) - tensões máximas no vão da placa; \( \sigma_{x}, \sigma_{y} \) - tensões no engaste, sobre o apoio

Quadro 6.1. Momento fletores e tensões de flexão nas chapas compensadas do corpo do silo
<table>
<thead>
<tr>
<th>Placa</th>
<th>( l_x )</th>
<th>( l_y )</th>
<th>( e = \frac{l_y}{l_x} )</th>
<th>( P_h )</th>
<th>( V_x )</th>
<th>( V_y )</th>
<th>( V_{ye} )</th>
<th>( \Gamma_{ah} )</th>
<th>( \Gamma_{Ah} )</th>
<th>( \Gamma_{e\text{Ah}} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C</td>
<td>0,79</td>
<td>1,12</td>
<td>- 1,5</td>
<td>3,31</td>
<td>0,183</td>
<td>0,146</td>
<td>0,719</td>
<td>0,38</td>
<td>0,86</td>
<td>1,49</td>
</tr>
<tr>
<td>3B</td>
<td>0,81</td>
<td>1,12</td>
<td>- 1,5</td>
<td>9,14</td>
<td>0,144</td>
<td>-</td>
<td>0,606</td>
<td>0,86</td>
<td>-</td>
<td>3,63</td>
</tr>
<tr>
<td>3A</td>
<td>0,79</td>
<td>1,12</td>
<td>- 1,5</td>
<td>13,58</td>
<td>0,183</td>
<td>0,146</td>
<td>0,719</td>
<td>1,55</td>
<td>3,53</td>
<td>6,10</td>
</tr>
<tr>
<td>2C</td>
<td>0,79</td>
<td>1,12</td>
<td>- 1,5</td>
<td>16,95</td>
<td>0,183</td>
<td>0,146</td>
<td>0,719</td>
<td>2,45</td>
<td>3,93</td>
<td>6,79</td>
</tr>
<tr>
<td>2B</td>
<td>0,81</td>
<td>1,12</td>
<td>- 1,5</td>
<td>19,50</td>
<td>0,144</td>
<td>-</td>
<td>0,606</td>
<td>2,27</td>
<td>-</td>
<td>6,92</td>
</tr>
<tr>
<td>2A</td>
<td>0,79</td>
<td>1,12</td>
<td>- 1,5</td>
<td>21,43</td>
<td>0,183</td>
<td>0,146</td>
<td>0,719</td>
<td>3,10</td>
<td>4,97</td>
<td>8,59</td>
</tr>
<tr>
<td>1C</td>
<td>0,79</td>
<td>1,12</td>
<td>- 1,5</td>
<td>22,90</td>
<td>0,183</td>
<td>0,146</td>
<td>0,719</td>
<td>3,31</td>
<td>5,31</td>
<td>9,17</td>
</tr>
<tr>
<td>1B</td>
<td>0,81</td>
<td>1,12</td>
<td>- 1,5</td>
<td>24,00</td>
<td>0,144</td>
<td>-</td>
<td>0,606</td>
<td>2,80</td>
<td>-</td>
<td>8,52</td>
</tr>
<tr>
<td>1A</td>
<td>0,74</td>
<td>1,12</td>
<td>- 1,5</td>
<td>24,85</td>
<td>0,183</td>
<td>0,146</td>
<td>0,719</td>
<td>3,37</td>
<td>5,05</td>
<td>8,74</td>
</tr>
</tbody>
</table>

1 - carregamento horizontal, normal à superfície das placas compensadas, dado na fig. 6.40
2 - quinhões de carga unitários, devido a carregamentos normais unitários sobre placas de dimensões relativas, obtidos dos quadros 2 e 3 do Anexo 3.
3 - reações sobre os apoios das chapas compensadas, obtidas a partir dos quinhões unitários: \( \Gamma = V \cdot (P_h \cdot e_{x})/l \)

\( \Gamma_{ah} \) - reação, devido ao carregamento horizontal sobre os pilares do corpo do silo, KN/m, (figura 6.7)

\( \Gamma_{Ah} \) - reação, devido ao carregamento horizontal sobre os anéis de enriquecimento do corpo do silo (KN/m), quando o apolo for considerado engastado tem-se "\( \Gamma_{Ah}^{eng} \)"; (figura 6.12).

Quadro 6.2. Reações sobre os apoios das chapas compensadas verticais do silo, devido ao carregamento horizontal.
<table>
<thead>
<tr>
<th>Chapa</th>
<th>$l_x$ m</th>
<th>$l_y$ m</th>
<th>$\gamma_{ah}$ KN/m</th>
<th>$\eta_{ph}$ KN/m</th>
<th>$\sigma_{pt}$ MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C</td>
<td>0,79</td>
<td>1,12</td>
<td>0,38</td>
<td>0,66</td>
<td>0,04</td>
</tr>
<tr>
<td>3B</td>
<td>0,81</td>
<td>1,12</td>
<td>0,86</td>
<td>1,49</td>
<td>0,08</td>
</tr>
<tr>
<td>3A</td>
<td>0,79</td>
<td>1,12</td>
<td>1,55</td>
<td>2,68</td>
<td>0,15</td>
</tr>
<tr>
<td>2C</td>
<td>0,79</td>
<td>1,12</td>
<td>2,45</td>
<td>4,24</td>
<td>0,24</td>
</tr>
<tr>
<td>2B</td>
<td>0,81</td>
<td>1,12</td>
<td>2,27</td>
<td>3,93</td>
<td>0,22</td>
</tr>
<tr>
<td>2A</td>
<td>0,79</td>
<td>1,12</td>
<td>3,10</td>
<td>5,37</td>
<td>0,30</td>
</tr>
<tr>
<td>1C</td>
<td>0,79</td>
<td>1,12</td>
<td>3,31</td>
<td>5,37</td>
<td>0,32</td>
</tr>
<tr>
<td>1B</td>
<td>0,81</td>
<td>1,12</td>
<td>2,80</td>
<td>4,85</td>
<td>0,27</td>
</tr>
<tr>
<td>1A</td>
<td>0,74</td>
<td>1,12</td>
<td>3,37</td>
<td>5,84</td>
<td>0,32</td>
</tr>
</tbody>
</table>

1- dado no quadro 6.2

2- $\eta_{ph} = 1,73 \gamma_{ah}$ conforme figura 6.8

3- $\sigma_{pt} = \eta_{ph} / \epsilon$, onde "$\epsilon$" é a espessura da chapa compensada, $\epsilon = 0,018$m

Quadro 6.3. Tração normal às fibras de face das chapas verticais de compensado.
<table>
<thead>
<tr>
<th>C H A P A</th>
<th>( t_0 ) ( \sigma_x ) MPa</th>
<th>( t_0 ) ( \sigma_y ) MPa</th>
<th>( f_{pfd}^X ) MPa</th>
<th>( \sigma_y ) MPa</th>
<th>( f_{ptd}^Y ) MPa</th>
<th>( \sigma_y ) MPa</th>
<th>( f_{pfd}^Y ) MPa</th>
<th>( f_{ptd}^Y ) MPa</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C</td>
<td>2,41</td>
<td>3,70</td>
<td>0,23</td>
<td>0,56</td>
<td>0,04</td>
<td>0,06</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>5,19</td>
<td>8,52</td>
<td>0,53</td>
<td>1,11</td>
<td>0,08</td>
<td>0,12</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>11,11</td>
<td></td>
<td>0,69</td>
<td>2,60</td>
<td>0,15</td>
<td>0,28</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>13,52</td>
<td>11,67</td>
<td>0,84</td>
<td>3,15</td>
<td>0,24</td>
<td>0,35</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>10,00</td>
<td></td>
<td>0,86</td>
<td>2,60</td>
<td>0,22</td>
<td>0,29</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>17,59</td>
<td>13,70</td>
<td>1,10</td>
<td>3,89</td>
<td>0,30</td>
<td>0,44</td>
<td>Tensão na direção &quot;X&quot; pouco superior a admissível</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>12,22</td>
<td></td>
<td>0,95</td>
<td>3,15</td>
<td>0,27</td>
<td>0,36</td>
<td>OK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>17,59</td>
<td></td>
<td>1,10</td>
<td>4,07</td>
<td>0,32</td>
<td>0,46</td>
<td>Tensão na direção &quot;X&quot; pouco superior a admissível</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1- Dado no quadro 6.1
2- \( f_{pfd}^X = 16 \text{MPa} \) → tensão de cálculo do compensado
3- Dado no quadro 6.3
4- \( f_{pfd}^Y = 10 \text{MPa}; f_{ptd}^Y = 6,5 \text{MPa} \) → tensões de cálculo do compensado

Quadro 6.4. Verificação das chapas de madeira compensada do corpo do silo
Portanto, na direção paralela às fibras de face do comp-
pensado, a verificação foi feita somente em relação aos esforços
admissíveis à flexão da chapa compensada:

$$\frac{\sigma^X_{pf}}{f^X}\leq 1$$
$$\frac{f^X_{ptd}}{f^X}$$

onde, $\sigma^X_{pf}$, é a tensão de flexão atuante devido a carga horizontal
na chapa de madeira compensada, na direção de suas fibras de face,
e, $f^X_{ptd}$, é a tensão de cálculo à flexão das chapas compensadas na
direção de suas fibras de face, do capítulo 6, igual a 16,0 MPa.

E, na direção normal às fibras de face do compensado, a
verificação deu-se em relação aos esforços de cálculo à flexão e à
tração da chapa compensada:

$$\frac{\sigma^Y_{pf}}{f^Y_{ptd}} + \frac{\sigma^Y_{pt}}{f^Y_{ptd}} \leq 1$$

onde, $\sigma^Y_{pf}$ e $\sigma^Y_{pt}$ são, respectivamente as tensões atuantes no comp-
pensado, na direção normal às suas fibras de face e $f^Y_{ptd}$ e $f^Y_{ptd}$
são, respectivamente, a tensão de cálculo à flexão e à tração das
chapas compensadas, na direção normal às suas fibras, iguais a 10MPa
e 6,5MPa, conforme capítulo 5.

As placas 1A, 1C e 2A apresentam tensões de flexão na
direção paralela às suas fibras de face, pouco superiores a tensão
de cálculo. Mesmo assim, as dimensões foram mantidas, porquanto es-
tes valores máximos de tensões são provenientes da hipótese de in-
deslocabilidade dos apoios das placas, o que na realidade não ocor-
re. As tensões ao longo das placas, tenderão a se redistribuir, di-
minuindo seus valores máximos.

Os deslocamentos máximos, normais ao plano dos compen-
sados, flechas devido aos carregamentos horizontais, são calculados
a partir dos deslocamentos de referência, dados nos quadros 1, 2 e
3 do Anexo 3.

Obedecendo às condições de vinculação das placas, suas
dimensões e carregamentos, no quadro 6.5, são apresentados os valo-
res máximos destes deslocamentos das chapas compensadas do corpo
do silo.
<table>
<thead>
<tr>
<th>Placa</th>
<th>( \frac{l_x}{m} )</th>
<th>( \frac{l_y}{m} )</th>
<th>( \frac{l_y}{l_x} ) x ( 10^{-6} )</th>
<th>( \frac{\delta}{\mu} ) ( \text{KN/m}^2 )</th>
<th>( \omega_P ) ( \text{mm} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C</td>
<td>0,79</td>
<td>1,12</td>
<td>-1,5</td>
<td>1,216</td>
<td>3,31</td>
</tr>
<tr>
<td>3B</td>
<td>0,81</td>
<td>1,12</td>
<td>-1,5</td>
<td>0,574</td>
<td>9,14</td>
</tr>
<tr>
<td>3A</td>
<td>0,79</td>
<td>1,12</td>
<td>-1,5</td>
<td>1,216</td>
<td>13,58</td>
</tr>
<tr>
<td>2C</td>
<td>0,79</td>
<td>1,12</td>
<td>-1,5</td>
<td>1,216</td>
<td>16,95</td>
</tr>
<tr>
<td>2B</td>
<td>0,81</td>
<td>1,12</td>
<td>-1,5</td>
<td>0,574</td>
<td>19,50</td>
</tr>
<tr>
<td>2A</td>
<td>0,79</td>
<td>1,12</td>
<td>-1,5</td>
<td>1,216</td>
<td>21,43</td>
</tr>
<tr>
<td>1C</td>
<td>0,79</td>
<td>1,12</td>
<td>-1,5</td>
<td>1,216</td>
<td>22,90</td>
</tr>
<tr>
<td>1B</td>
<td>0,81</td>
<td>1,12</td>
<td>-1,5</td>
<td>0,574</td>
<td>24,00</td>
</tr>
<tr>
<td>1A</td>
<td>0,74</td>
<td>1,12</td>
<td>-1,5</td>
<td>1,216</td>
<td>24,85</td>
</tr>
</tbody>
</table>

1° deslocamento de referência máximo no vão da placa, obtido dos quadros 2 e 3 do Anexo 3.

2° carregamento horizontal, normal a superfície das placas compensadas, (figura 6.40)

3° flecha máxima, obtida a partir dos deslocamentos de referência, dados nos quadros 2 e 3 do Anexo 3

\[ \omega_P = 10^{-6} \cdot \delta \cdot \frac{P_h}{l_x^4} \text{ (mm)} \]

Quadro 6.5. Flechas máximas das chapas compensadas do corpo do silo.

Observa-se que nos compensados da parte inferior do corpo do silo, os valores das flechas são da ordem da metade da espessura destas chapas. Se for considerada a deformação lenta devido à previsão de carregamentos prolongados e os possíveis giros dos apoios dos compensados, considerados engastados devido à continuidade de destes sobre os apoios, estas flechas, certamente, atingirão valores em torno daquela espessura.

Isto representa limitações à hipótese de flexão pura, utilizada para solução das chapas de compensado em sua "ação de placa", onde as deformações no plano médio das placas foram consideradas pequenas e suscetíveis de serem desprezadas, ou seja, as flechas das placas foram admitidas pequenas em relação a sua espessura.

Estudando a flexão e a torção em placas de material anisotrópico, HEARMON e ADAMS (1952) limitam em 6/10 estes deslocamentos, a fim de evitar os efeitos de membrana, responsáveis por alguma gamentos do plano médio das placas.
Também contribui para a falta de precisão da teoria utilizada, a consideração sobre a rigidez dos apoios das placas. Os pilares e os anéis de enrijeecimento do corpo do silo foram considerados indeslocáveis, na realidade, com seus deslocamentos transversais, provocam redistribuição das tensões sobre as placas, diminuindo aqueles valores máximos.

Por outro lado, a utilização de teorias mais complexas, que levam em consideração os aspectos acima mencionados, certamente não traria resultados práticos significativos. Assim, os procedimentos de cálculo foram mantidos.

b- Verificações das ligações das chapas compensadas

As chapas de madeira compensada do corpo do silo, ao longo de seus apoios horizontais, ficam apenas encostadas nos anéis de enrijeecimento sem nenhum tipo de ligação, exceção feita ao primeiro anel, onde se ligam a viga de sustentação da tremonha por parafusos auto-atarraxantes, 1/4" x 60mm. Estes parafusos, cravados perpendicularmente à lateral da viga, ficam sujeitos a esforços de arrancamento direto, $q_{sa} = q_{Ah}$, conforme item 6.2.1.1-b (figura 6.15).

O número de parafusos necessário para absorver este arranamento direto, função da carga admissível no parafuso para esta solicitação, dada no item 5.2 do capítulo 5, é mostrado no quadro 6.6.

<table>
<thead>
<tr>
<th>Ligação das chapas compensadas ao 1º anel de enrijeecimento</th>
<th>$1q_{Ah}$</th>
<th>$2q_{sa} = q_{Ah}$</th>
<th>$3q_{sad}$</th>
<th>Número de parafusos necessário</th>
<th>Espaçamento entre parafusos, A. (m - cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN/m</td>
<td>KN/m</td>
<td>KN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,06</td>
<td>6,06</td>
<td>1,92</td>
<td>3,16</td>
<td>28,0</td>
<td></td>
</tr>
</tbody>
</table>

1- reação no lado horizontal inferior da placa "1A", valor majorado, 20% em relação ao valor do quadro 6.3, em virtude da compensação dos momentos de engastes

2- conforme figura 6.15

3- valor obtido no item 5.2, capítulo 5

Quadro 6.6. Espaçamento entre parafusos auto-atarraxantes, na ligação das chapas compensadas verticais com a viga da tremonha
Ao longo de seus apoios verticais, as chapas compensadas também ficam ligadas por parafusos auto-atarraxantes de 1/4" x 60mm, aos pilares do prisma hexagonal. Estes parafusos estão sujeitos, simultaneamente a arrancamento direto e esforços laterais (figura 6.16).

A solicitação de arrancamento direto é dada por \( Q_{sa} = \tau_{ah} \) (quadro 6.2) e os esforços laterais por \( Q_{sl} = 1,73 \tau_{ah} e Q_{xl} = \tau_{pt} \), onde, \( \tau_{pt} \) é obtido no quadro 6.7, em função da carga de atrito do material ensilado junto às paredes verticais e do peso próprio das chapas compensadas.

Entre os dois primeiros anéis de enrijeçamento, estes parafusos auto-atarraxantes são substituídos pelos parafusos passantes com porcas e arrelas da união entre os pilares internos e externos do silo (item 6.3.1.1 - f2).

<table>
<thead>
<tr>
<th>Chapa</th>
<th>( ^1 \rho_w )</th>
<th>( ^2 q_p )</th>
<th>( ^3 ) Área de influência</th>
<th>Quinhão de carga no pilar</th>
<th>( ^4 \tau_{pt} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1,94</td>
<td>0,11</td>
<td>1,49</td>
<td>3,05</td>
<td>1,25</td>
</tr>
<tr>
<td>2</td>
<td>4,73</td>
<td>0,11</td>
<td>1,49</td>
<td>7,21</td>
<td>2,96</td>
</tr>
<tr>
<td>1</td>
<td>5,94</td>
<td>0,11</td>
<td>1,49</td>
<td>9,01</td>
<td>3,69</td>
</tr>
</tbody>
</table>

1- carga de atrito, tangente à superfície dos compensados (figura 6.42)
2- peso próprio do compensado (item 6.3.1)
3- metade da superfície do compensado
4- quinhão de carga do pilar, dividido pela altura do compensado (2,44m)

Quadro 6.7. Reação sobre os pilares do corpo do silo, devido às cargas tangenciais.

O número de parafusos auto-atarraxantes, necessários para absorver estes esforços, é obtido cumulativamente, em função das cargas admissíveis nestes parafusos, para cada tipo de solicitação, dadas no item 5.2, do capítulo 5.

O quadro 6.8. mostra este número de parafusos, bem como, todos os demais dados necessários às determinações.
<table>
<thead>
<tr>
<th>CHAPA</th>
<th>( Q_{sa} - \Gamma_{ah})</th>
<th>( Q_{pt} - \Gamma_{pt} )</th>
<th>( Q_{s1} = 1,73)</th>
<th>( Q_{s1} = 1 )</th>
<th>( \tan \beta )</th>
<th>( \beta )</th>
<th>( F_{sld} = 1,28)</th>
<th>( F_{sld} = 1,92)</th>
<th>( F_{sld} = 1,40)</th>
<th>( F_{sld} = 1,32)</th>
<th>( F_{sld} \cdot \cos \beta )</th>
<th>( F_{sld} \cdot \sin \beta )</th>
</tr>
</thead>
<tbody>
<tr>
<td>3C</td>
<td>0,38</td>
<td>0,20</td>
<td>1,25</td>
<td>1,41</td>
<td>28°</td>
<td>1,38</td>
<td>1,02</td>
<td>1,22</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>0,86</td>
<td>0,45</td>
<td>1,25</td>
<td>1,49</td>
<td>30°</td>
<td>1,35</td>
<td>1,44</td>
<td>1,89</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>1,55</td>
<td>0,81</td>
<td>1,25</td>
<td>2,68</td>
<td>65°</td>
<td>1,33</td>
<td>2,23</td>
<td>3,04</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>2,45</td>
<td>1,28</td>
<td>2,96</td>
<td>4,24</td>
<td>55°</td>
<td>1,35</td>
<td>3,83</td>
<td>5,11</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>2,27</td>
<td>1,18</td>
<td>2,96</td>
<td>3,93</td>
<td>53°</td>
<td>1,35</td>
<td>3,64</td>
<td>4,82</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>3,10</td>
<td>1,61</td>
<td>2,96</td>
<td>5,37</td>
<td>61°</td>
<td>1,34</td>
<td>4,57</td>
<td>6,18</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>3,31</td>
<td>1,72</td>
<td>3,69</td>
<td>5,73</td>
<td>57°</td>
<td>1,34</td>
<td>5,09</td>
<td>6,81</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>2,80</td>
<td>1,46</td>
<td>3,69</td>
<td>4,85</td>
<td>53°</td>
<td>1,35</td>
<td>4,52</td>
<td>5,98</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>3,37</td>
<td>-</td>
<td>3,69</td>
<td>5,84</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1- \( \Gamma_{ah} \) = obtida no Quadrado 6.2
2- \( \Gamma_{pt} \) = obtida no Quadrado 6.7
3- \( Q_{s1} = \left( Q_{s1} \right)^2 + \left( Q_{s1} \right)^2 \right)^{1/2} \)
4- Ligação feita pelos parafusos passantes com porcas e arreuelas, da ligação dos pilares superiores com os inferiores, do silo - Item 6.3.1.1-f

Quadro 6.8. Espaçamento entre parafusos auto-atarraxantes, na ligação das chapas compensadas do corpo do silo aos pilares de madeira maciça.
c- Verificação dos Anéis de enrijeçamento do silo

Os anéis de enrijeçamento, conforme o item 6.2.1.1-b, estão sujeitos a um carregamento transversal, uniformemente distribuído, Q_A, e ao esforço de tração axial N_A = 0,87 \cdot Q_A \cdot L_A (figura 6.12).

As dimensões iniciais das peças dos anéis de enrijeçamento são verificadas para as tensões normais atuante e os deslocamentos transversais, em função das características elásticas e de resistência da Peroba Rosa, dadas pela ABNT-NBR 7190 (1982) e pelo IPT (1956).

- módulo de elasticidade \( E_W = 9430 \text{ MPa} \)
- valor de cálculo à flexão \( f_{wfld} = 13,5 \text{ MPa} \)
- valor de cálculo à tração \( f_{wtd} = 13,5 \text{ MPa} \)

Em relação às tensões atuantes, tem-se:

\[
\frac{\sigma_{Af}}{f_{wfld}} + \frac{\sigma_{At}}{f_{wtd}} \leq 1
\]

onde, \( \sigma_{Af} \) e \( \sigma_{At} \), são, respectivamente as tensões de flexão e tração atuantes nas peças dos anéis de enrijeçamento.

Os deslocamentos transversais nas peças dos anéis de enrijeçamento, provocados pela carga uniformemente distribuída, são diminuídos pela ação dos esforços de tração. Os deslocamentos corrigidos, são obtidos de forma simplista, pelo procedimento a seguir:

- deslocamentos transversal, na seção central da peça devido à carga uniformemente distribuída (figura 6.47).

\[
\begin{align*}
Q_A & \quad \omega_A = \frac{5 \cdot Q_A \cdot L_A}{384 \cdot E'_W \cdot L} \\
1_A & \\
E'_W = 2/3 \cdot E_W & \quad \text{módulo de elasticidade reduzido, devido à ação prolongada do carregamento.}
\end{align*}
\]

I = momento de inércia da seção transversal da peça

Figura 6.47 - Deslocamento transversal das peças do anel em função da carga distribuída
- esforços introduzidos pela tração na peça, contrário aos deslocamentos transversais (figura 6.48).

\[ M' = N_A \cdot \omega_A \]  

\[ \omega_A = \frac{q_A^1 \cdot I_A^2}{8} = N_A \cdot \omega_A + q_A^1 = 8 \cdot \omega_A \cdot N_A / I_A^2 \]

Figura 6.48 - Esforços contrário aos deslocamentos transversais, devido à ação de tração na peça.

- assim, os deslocamentos transversais, corrigidos pelos esforços de tração, são obtidos dos deslocamentos iniciais, afetados pelo coeficiente \((q_A - q_A^1) / q_A\):

\[ \omega_A' = \frac{q_A - q_A^1}{q_A}, \omega_A \]

A verificação a estes deslocamentos transversais fez-se em função da recomendação da norma alemã DIN 1052 (1973) que limita \( \omega \leq 1/200 \), sendo "1" o comprimento da peça:

\[ \frac{\omega_A}{\omega} \leq 1 \]

O quadro 6.9 mostra os valores das tensões e deslocamentos, bem como todos os demais dados necessários às verificações.

O comprimento teórico de cada lado do anel, para os cálculos, foi admitido entre centros das ligações parafusadas dos vértices do hexágono (figura 6.49).
| ANEL | \( f_{ak}^{imp} \) | \( f'_{ak}^{imp} \) | \( f_{ak} \) | \( f'_{ak} \) | \( w_{a} \) | \( \phi_{a} \) | \( \sigma_{a} \) | \( I_{a} \) | \( M_{a} \) | \( f_{af}^{int} \) | \( f'_{af}^{int} \) | \( f_{af} \) | \( f'_{af} \) | \( \sigma_{af} \) | \( \phi_{af} \) | \( \sigma_{af}^{int} \) | \( \phi_{af}^{int} \) | \( d_{a} \) | \( v_{a} \) | \( g_{a} \) | \( Q_{a} \) | \( Q_{a}^{int} \) | \( Q_{af} \) | \( Q_{af}^{int} \) | \( \frac{v_{a} - g_{a}}{g_{a}} \) | \( H_{a} \) | \( T_{a} \) | Observação |
|------|-----------------|-----------------|----------|----------|--------|--------|---------|--------|--------|-----------------|-----------------|---------|---------|----------|--------|---------|---------|---------|--------|---------|---------|------|
| 10   | -               | 1103            | 1022     | 1014     | 0,21   | 0,16   | 2,92    | 0,32   | 6,34   | 1,37            | 1,37            | 0,21    | 0,16    | 2,92     | 0,32   | 6,34    | 1,37    | 1,37    | 0,21   |        |        |        |        |
| 9    | 1,49            | 5,12            | 1,07     | 5,73     | 2,93   | 0,16   | 2,92    | 0,32   | 6,34   | 1,37            | 1,37            | 0,21    | 0,16    | 2,92     | 0,32   | 6,34    | 1,37    | 1,37    | 0,21   |        |        |        |        |
| 8    | 6,60            | 6,10            | 9,73     | 2,02     | 10,92  | 6,34   | 14,86   | 1,52   | 1,15   | 6,46            | 0,24            | 0,97    | 0,73    | 10,92    | 6,34   | 14,86   | 1,52   | 1,15   | 6,46   | 0,24   | 0,97    | 0,73    |        |
| 7    | 14,24           | 14,72           | 8,56     | 1,86     | 10,04  | 6,34   | 12,92   | 1,39   | 1,06   | 5,94            | 0,29            | 0,97    | 0,73    | 10,04    | 6,34   | 12,92   | 1,39   | 1,06   | 5,94   | 0,29   | 0,97    | 0,73    |        |
| 6    | 6,79            | 6,92            | 13,71    | 2,65     | 15,39  | 6,34   | 11,13   | 1,60   | 0,94   | 3,84            | 0,20            | 0,98    | 0,73    | 13,71    | 6,92   | 13,71   | 2,65   | 15,39  | 1,60   | 0,94   | 3,84   | 0,20   | 0,98    | 0,73    |        |
| 5    | 6,92            | 8,59            | 15,51    | 3,23     | 17,01  | 6,34   | 12,62   | 1,01   | 0,97   | 4,34            | 0,36            | 0,98    | 0,73    | 12,62    | 6,34   | 12,62   | 1,01   | 0,97   | 4,34   | 0,36   | 0,98    | 0,73    |        |
| 4    | 3415            | 7337            | 12333    | 560     | 13035  | 6,34   | 10,00   | 1,94   | 1,14   | 3,46            | 0,23            | 1,02    | 0,73    | 10,00    | 6,34   | 10,00   | 1,94   | 1,14   | 3,46   | 0,23   | 1,02    | 0,73    | 0,73    |
| 3    | 9,17            | 8,52            | 17,69    | 3,68     | 19,01  | 6,34   | 14,30   | 2,07   | 1,14   | 4,95            | 0,47            | 0,99    | 0,73    | 14,30    | 6,34   | 14,30   | 2,07   | 1,14   | 4,95   | 0,47   | 0,99    | 0,73    | 0,73    |
| 2    | 8,52            | 8,74            | 17,26    | 3,59     | 19,33  | 6,34   | 14,02   | 2,02   | 1,19   | 4,03            | 0,45            | 0,99    | 0,73    | 14,02    | 6,34   | 14,02   | 2,02   | 1,19   | 4,03   | 0,45   | 0,99    | 0,73    | 0,73    |

Quadro 6.9. Verificação das peças dos anéis de enriquecimento do silo
1_A + lado do hexágono do anel de enrijecimento do corpo do silo
1_A = 1,29m

Figura 6.49. Lado do anel hexagonal de enrijecimento do corpo do silo

Observa-se que quase todos os anéis são solicitados por tensões pouco superiores às admissíveis. Entretanto, por terem estas peças comprimentos relativamente pequenos, 1,29m, é possível a utilização de peças de qualidade superior, isentas de defeitos, onde os valores de cálculo adotados, possam ser majorados em até 40%, ABNT-NBR 6230 (1982).

d- Verificação das ligações das peças dos anéis de enrije cimento

As peças de madeira maciça dos anéis de enrijecimento do silo, são ligadas por parafusos passantes, porcas e arruelas (figura 6.13).

Os parafusos, instalados nas peças entalhadas a meia madeira suportam esforços laterais de tração, G_S1, inclinadas de 60° em relação às fibras da madeira, como mostra a figura 6.50.

Foram utilizados parafusos de diâmetro 1/2", sendo o número necessário estabelecido em função das cargas admissíveis nestes parafusos, dadas por LUCHESE e STAMATO (1967), variando com a espressura das peças e inclinação dos esforços em relação às fibras da madeira.

O quadro 6.10 resume todos os dados necessários à determinação deste número de parafusos, bem como, apresenta os detalhes de colocação dos mesmos para cada anel, obedecendo às recomendações, quanto aos espaçamentos entre parafusos, da ABNT-NBR 7190 (1982), em seu artigo 42.
<table>
<thead>
<tr>
<th>ANEL</th>
<th>seção</th>
<th>D/2</th>
<th>F_x</th>
<th>F_y</th>
<th>F_y = 60°</th>
<th>F_z</th>
<th>D</th>
<th>Disposição dos parafusos 1/2&quot; (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Viga de sustentação da tremonha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6 x 16</td>
<td>3,0</td>
<td>2,86</td>
<td>2,37</td>
<td>2,48</td>
<td>19,27</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6 x 16</td>
<td>3,0</td>
<td>2,86</td>
<td>2,37</td>
<td>2,48</td>
<td>19,85</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6 x 16</td>
<td>3,0</td>
<td>2,86</td>
<td>2,37</td>
<td>2,48</td>
<td>13,85</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6 x 16</td>
<td>3,0</td>
<td>2,86</td>
<td>2,37</td>
<td>2,48</td>
<td>17,41</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6 x 16</td>
<td>3,0</td>
<td>2,86</td>
<td>2,37</td>
<td>2,48</td>
<td>15,29</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6 x 16</td>
<td>3,0</td>
<td>2,86</td>
<td>2,37</td>
<td>2,48</td>
<td>10,04</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6 x 16</td>
<td>3,0</td>
<td>2,86</td>
<td>2,37</td>
<td>2,48</td>
<td>10,92</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3 x 12</td>
<td>1,5</td>
<td>1,43</td>
<td>1,18</td>
<td>1,23</td>
<td>1,16</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3 x 12</td>
<td>1,5</td>
<td>1,43</td>
<td>1,18</td>
<td>1,23</td>
<td>5,75</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

1- metade da espessura da peça, visto ser a ligação em madeira
2- carga admissível nos parafusos de 1/2" de diâmetro - LOCHESE e STAMATO (1967)
3- $F_{slid} = \frac{F_x}{\tan^2\theta + F_y \cdot \cos^2\theta}$ fórmula de Hanksina
4- $Q_{slid} = \text{esforço atuante no parafuso} = Q_{slid}^2 = \frac{2}{R} - \text{Quadro 6.9}$

Quadro 6.10. Ligações parafusadas dos anéis de enriquecimento do silo
Figura 6.50. Direção dos esforços nos parafusos em relação às fibras das peças dos anéis de enrijece-
to.


![Diagrama de parafusos](image)

a) anéis de 12 cm de largura
b) anéis de 16 cm de largura

Área útil: A área útil para as peças é a área bruta menos duas seções de parafuso e menos três seções de parafuso, respectiva-
mente, para peças de 12 e 16 cm de largura.

Figura 6.51. Área útil das peças dos anéis de enrijece-
to, junto às ligações parafusadas
<table>
<thead>
<tr>
<th>Anel</th>
<th>( N_A ) KN</th>
<th>( ^2 \text{Seção da peça na ligação} ) cm²</th>
<th>( ^3 \text{A útil} ) ( 10^{-4} \text{m}^2 )</th>
<th>( ^4 \text{At MPa} )</th>
<th>( ^5 \frac{\text{At}}{f_{\text{wtd}}} ) ≤ 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1,16</td>
<td>1,5 x 12</td>
<td>14,19</td>
<td>0,82</td>
<td>0,06</td>
</tr>
<tr>
<td>9</td>
<td>5,75</td>
<td>1,5 x 12</td>
<td>14,19</td>
<td>4,05</td>
<td>0,30</td>
</tr>
<tr>
<td>8</td>
<td>10,92</td>
<td>3,0 x 12</td>
<td>32,19</td>
<td>3,39</td>
<td>0,25</td>
</tr>
<tr>
<td>7</td>
<td>10,04</td>
<td>3,0 x 12</td>
<td>32,19</td>
<td>3,19</td>
<td>0,24</td>
</tr>
<tr>
<td>6</td>
<td>15,39</td>
<td>3,0 x 16</td>
<td>44,19</td>
<td>3,48</td>
<td>0,26</td>
</tr>
<tr>
<td>5</td>
<td>17,41</td>
<td>3,0 x 16</td>
<td>44,19</td>
<td>3,94</td>
<td>0,29</td>
</tr>
<tr>
<td>4</td>
<td>13,85</td>
<td>3,0 x 16</td>
<td>44,19</td>
<td>3,13</td>
<td>0,23</td>
</tr>
<tr>
<td>3</td>
<td>19,85</td>
<td>3,0 x 16</td>
<td>44,19</td>
<td>4,49</td>
<td>0,33</td>
</tr>
<tr>
<td>2</td>
<td>19,37</td>
<td>3,0 x 16</td>
<td>44,19</td>
<td>4,38</td>
<td>0,32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\( ^{-} \): esforço de tração no anel, dado no quadro 6.9.
\( ^{\circ} \): ligação feita em meia madeira
\( ^{++} \): conforme figura 6.51.
\( ^{-} \): tensão de tração \( \sigma_{At} = \frac{N_A}{A_{\text{util}}} \)
\( ^{1} \): tensão de cálculo à tração na Peroba Rosa \( f_{\text{wtd}} = 13,5 \text{MPa} \)
\( ^{2} \): viga de sustentação da tremonha do silo

Quadro 6.11. Verificação à tração, com seção líquida das peças que constituem os anéis de enrijecimiento.
e- Verificação dos pilares do corpo do silo

Os pilares do corpo do silo, devido ao peso próprio da cobertura, ao peso próprio do corpo do silo e a ação de atrito do material ensilado sobre as paredes verticais, ficam submetidos à compressão axial.

Visto atuarem como elementos de ligação das chapas de compensado em sua "ação de chapa", os pilares também são solicitados, transversalmente, a esforços de tração. Entretanto, como já dito no item 6.2.1.1-a, estas solicitações são pequenas e os esforços que geram nos pilares foram analisados e desprezados.

Assim, a verificação dos pilares fez-se apenas em relação aos esforços de compressão, sendo estes considerados como peças curtas (ver item 6.2.1.2), em consequência do contraventamento proporcionado pelas chapas compensadas, dispostas na forma prismática hexagonal, ao longo de toda sua altura:

\[
\frac{\sigma_{\text{int}}}{f_{\text{wcd}}} \leq 1
\]

onde, \(\sigma_{\text{int}}\), é a tensão de compressão atuante na seção mais solicitada do pilar interno do silo, e \(f_{\text{wcd}}\), a tensão de cálculo da Peroba Rosa, igual a 8,5 MPa, segundo o artigo 51 da ABNT-NBR 7190 (1982).

Do item 6.3.1, determina-se o carregamento de compressão máximo (na base do corpo do silo), sobre cada pilar do corpo do silo:

- peso da cobertura ......................... → 0,33KN
- peso do corpo do silo ...................... → 2,55KN
- ação do atrito nas paredes verticais, devido ao material ensilado (1,22m x 21,23KN/m) ......................... → 25,90KN
- carregamento em cada pilar (\(N_{\text{int}}\)) .................. → 28,78KN

As dimensões da seção transversal destes pilares, admitidos inicialmente em peças de Peroba Rosa 6 x 16 cm², recortados para permitirem a montagem hexagonal, constam da figura 6.52.
Figura 6.52. Dimensões dos pilares do corpo do silo

O quadro 6.12 mostra a verificação dos pilares ao esforço de compressão axial máximo.

| Carregamento de compressão axial no pilar | $N_p^{\text{int}} = 28,78 \text{ MPa}$ |
| Área da seção transversal do pilar | $A_p^{\text{int}} = 71,00 \times 10^{-4} \text{ m}^2$ |
| Tensão de compressão axial atuante | $\sigma_{PC}^{\text{int}} = 4,05 \text{ MPa}$ |
| Tensão admissível à compressão axial na Peroba Rosa | $f_{wcd}^{\text{int}} = 8,5 \text{ MPa}$ |
| Verificação | $\sigma_{PC}^{\text{wcd}} = 0,48 \cdot \text{MPa}$ $f_{wcd}^{\text{wcd}}$ |

Quadro 6.12. Verificação dos pilares do corpo do silo à compressão axial máxima

$f$- Verificação das emendas dos pilares do silo

Os pilares do silo têm duas emendas: uma, devido às dimensões comerciais das peças de madeira, ao nível do 6.º anel de enrijecimento, onde os pilares internos são simplesmente prolongados, mantendo-se iguais às peças ligadas, e outra, por aspectos construtivos, ao nível da viga de sustentação da tremonha, base do corpo do silo, onde os pilares internos são prolongados externamente até as fundações, como mostrados na figura 6.17.
fl- Emendas ao nível do 6º anel de enrijecimento

Nestas emendas, os esforços de compressão, são absorvidos pelo contato das peças ligadas. Construtivamente, a continuidade da ligação dá-se pelas chapas de compensado, contínuas neste nível, ligadas as duas partes do pilar, pelos parafusos auto-atarrazantes.

A figura 6.53 ilustra estas ligações, que no item 6.3.2.3. são verificadas à ação do vento.

Figura 6.53. Emenda do pilar do corpo do silo ao nível do 6º anel de enrijecimento
f2- Emendas dos pilares internos e externos do silo

Os pilares internos da parte superior do silo transferem os esforços de compressão a que estão sujeitos, para os pilares externos, duplos, da parte inferior do silo, através de ligações com parafusos passantes de 1/2" de diâmetro.

Estas ligações, são feitas aproveitando o trecho comum às duas partes dos pilares, entre os dois primeiros anéis de enrije- cimento (figura 6.54).

Figura 6.54. Ligações entre os pilares superiores do cor- po do silo e os pilares inferiores do silo

Para a transferência dos esforços de compressão, a ligação parafusada foi admitida excêntrica, em duas peças, onde a peça prin- cipal é o pilar externo, duplo, e a peça secundária é composta pe
lo pilar interno e a chapas de compensado, com largura aproximada de 6 cm (figura 6.55).

Figura 6.55. Esquema da ligação exêntrica entre os pilares internos e externos do silo

A carga admissível nos parafusos deste tipo de ligação foi obtida em função das recomendações de LUCESE e STAMATO (1967), para ligações parafusadas entre peças de Percoba Rosa, desconsiderando-se o fato da peça secundária ser partida e com uma parte em madeira compensada.

- parafuso 1/2 + esforço axial
- b/2 = 6,0 cm
- LUCESE e STAMATO (1967) \( F_{sld} = 3,63 \text{KN} \)

Assim o número de parafusos necessários em cada ligação foi obtido conforme o quadro 6.13, sendo a instalação destes ilustrada na figura 6.54.

<table>
<thead>
<tr>
<th>Ligação dos pilares internos com os pilares externos do silo</th>
<th>( N_{int}^F (\text{KN}) )</th>
<th>( F_{sld} (\text{KN}) )</th>
<th>Número de parafusos Total por Ligação Em cada peça do pilar externo</th>
</tr>
</thead>
<tbody>
<tr>
<td>28,78</td>
<td>3,63</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

\( ^{1-} \) força de compressão axial nos pilares internos, dada no quadro 6.12
\( ^{2-} \) carga axial admissível no parafuso, segundo LUCESE e STAMATO (1967)

Os pilares do corpo do silo também atuam como elementos de ligação para as chapas de compensado em suas "ações de chapa". Neste trecho, entre os dois primeiros anéis de enriquecimento, estes parafusos passantes da ligação entre os pilares internos e externos são aproveitados também para estas ações, substituindo os parafusos auto-atarraxantes, ao carregamento direto e aos esforços laterais.

Este aproveitamento foi possível, porquanto aceitou-se teoricamente, não haver sobreposição de esforços. Admitiu-se, agirem os esforços provenientes das ligações das chapas compensadas, no plano destas com os pilares internos, e os esforços devido à compressão axial, no plano das chapas compensadas com os pilares externos.

Os oito parafusos passantes, utilizados na ligação dos pilares, foram admitidos suficientes para as ligações das chapas compensadas, visto, além de serem de diâmetro maior, estarem menos espaçados, 12cm (figura 6.54), do que seria necessário aos parafusos auto-atarraxantes neste trecho do silo, 14cm, conforme se pode prever das solicitações dadas no quadro 6.8.

6.3.1.2. Verificação dos elementos e ligações da tremonha do silo

a- Verificação das chapas de madeira compensada


<table>
<thead>
<tr>
<th>Ação</th>
<th>Carregamento normal</th>
<th>Carregamento tangencial</th>
</tr>
</thead>
<tbody>
<tr>
<td>peso próprio</td>
<td>$g_{2n} = 0,27\text{KN/m}^2$</td>
<td>$g_{2t} = 0,27\text{KN/m}^2$</td>
</tr>
<tr>
<td>material ensilado</td>
<td>$p_n = 36,26\text{KN/m}^2$</td>
<td>$p_w = 18,13\text{KN/m}^2$</td>
</tr>
<tr>
<td>Total</td>
<td>$q_n = 36,53\text{KN/m}^2$</td>
<td>$q_t = 18,40\text{KN/m}^2$</td>
</tr>
</tbody>
</table>

1- dados no item 6.3.1.2; 2- dados na figura 6.45.

Quadro 6.14. Carregamentos sobre as chapas de compensado da tremonha do silo
Na sequência, as chapas triangulares, são verificadas quanto aos aspectos de tensões e deslocamentos, tanto em relação às ações de flexão biaxial como em relação às ações de tração que nelas atuam, conforme descrito no item 6.2.2.

As tensões máximas, devido à flexão e à tração, são compostas e comparadas, em cada direção, com as características de resistência das chapas de madeira compensada, obtidas no capítulo 5, item 5.1.

--- limite da chapa compensada
--- linha de apoio de chapa compensada

Figura 6.56. Apoios da chapa de compensado da tremonha

Os momentos fletores sobre a chapa triangular, devido ao carregamento normal a sua superfície, são obtidos a partir do quadro 4 do anexo 3.

Estes momentos fletores máximos e as respectivas tensões de flexão atuantes nas chapas, bem como, todos os dados necessários aos cálculos, são apresentados no quadro 6.15.
Quadro 6.15. Momentos de flexão e tensões de flexão nas chapas compensadas da tremonha do silo

Analizando os valores das tensões de flexão, vê-se, que devido a "ação de placa", as tensões na direção "y", normal às fibras de face do compensado atingem valor máximo, pouco superior ao valor admissível obtido no capítulo 5. Na direção paralela às fibras, as tensões se mantêm abaixo do correspondente valor admissível.

O quadro 6.16 mostra as reações das placas triangulares sobre seus apoios devido ao carregamento normal à sua superfície, admitindo, como já mencionado no item 6.2.2.1, a distribuição deste carregamento por quinhões e as reações uniformemente distribuídas ao longo destes apoios.

Quadro 6.16. Reações sobre os apoios das chapas triangulares da tremonha, devido ao carregamento normal às chapas

A reação nas arestas, $\tau_{an}$, devido à "ação de chapa" dos compensados, provocam nestes tração transversal e longitudinal às suas fibras de face (figura 6.23). A tração transversal tem valor $\tau_{pn}^y = 2,45 \tau_{an}$, enquanto, a tração longitudinal é variável, linearmente, de zero ao máximo $\tau_{pn}^x = 2\tau_{an} \frac{l_x}{l_y}$

A esta tração longitudinal, soma-se a tração decorrente do carregamento tangencial à superfície das chapas, também variável linearmente de zero a um máximo $\tau_{pt}^x = \tau_{vt}$ (figura 6.29). O quadro 6.17 apresenta o valor desta reação da chapa compensada na viga de sustentação da tremonha, devido às cargas tangenciais, $\tau_{vt}$.

<table>
<thead>
<tr>
<th>$l_x$</th>
<th>$l_y$</th>
<th>$q_t$</th>
<th>$2\tau_{vt} = \frac{q_t \cdot l_x}{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>m</td>
<td>KN/m²</td>
<td>KN/m</td>
</tr>
<tr>
<td>1,30</td>
<td>1,08</td>
<td>18,40</td>
<td>11,96</td>
</tr>
</tbody>
</table>

$^1$ - Carga tangencial à superfície da tremonha, dada no quadro 6.14

$^2$ - $\tau_{vt}$ = reação devido ao carregamento tangencial sobre a viga de sustentação da tremonha, base da chapa compensada triangular $\tau_{vt} = q_t \cdot \frac{l_x \cdot l_y}{2} + \tau_{vt} = q_t \cdot \frac{l_x}{2}$, KN/m

Quadro 6.17. Reação devida à carga tangencial ao longo da base da chapa triangular da tremonha

Assim, a tração longitudinal às fibras de face das chapas triangulares da tremonha do silo, tem valor variável de zero no vértice a um máximo $\tau_{p}^x = \tau_{pn}^x + \tau_{pt}^x$ na base da chapa compensada (figura 6.57).

$$
\begin{align*}
\tau_{pn}^x & = 2\tau_{an} \frac{l_x}{l_y} \quad (q.6.16) \\
\tau_{pt}^x & = \tau_{vt} \quad (q.6.17) \\
\tau_{p}^x & = \tau_{pn}^x + \tau_{pt}^x \\
\end{align*}
$$

$$
\begin{align*}
(\tau_{pn}^x)_{\text{max}} & = 13,60 \text{ KN/m} \\
(\tau_{pt}^x)_{\text{max}} & = 11,96 \text{ KN/m} \\
(\tau_{p}^x)_{\text{max}} & = 25,56 \text{ KN/m}
\end{align*}
$$

Figura 6.57. Tração longitudinal às fibras de face da chapa de madeira compensada da tremonha do silo
O quadro 6.18 apresenta os valores das trações e respectivas tensões, atuantes na chapa de compensado triangular da tremo
nha do silo, em sua "ação de chapa", suportando os carregamentos normal e tangencial.

<table>
<thead>
<tr>
<th></th>
<th>$t_{an}$</th>
<th>$f_{vt}$</th>
<th>$t_{nX}$</th>
<th>$t_{nY}$</th>
<th>$t_{X}$</th>
<th>$t_{Y}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN/m</td>
<td>KN/m</td>
<td>KN/m</td>
<td>KN/m</td>
<td>KN/m</td>
<td>MPA</td>
<td>MPA</td>
</tr>
<tr>
<td>No centro da chapa</td>
<td>Na base da chapa</td>
<td>No centro da chapa</td>
<td>Na base da chapa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.65</td>
<td>11.96</td>
<td>17.04</td>
<td>25.56</td>
<td>13.84</td>
<td>0.95</td>
<td>1.42</td>
</tr>
</tbody>
</table>

1° dado na figura 6.57
2° dado na figura 6.23 - $\gamma = 2.45$ $t_{an}$
3° $\gamma_{pt} = \gamma_{pt}/\gamma$, onde $\gamma$ é a espessura da chapa compensada, e $\gamma = 0.018m$

Quadro 6.18. Trações na chapa de compensado da tremo
nha do silo

Observa-se, que estas tensões de chapa são pequenas, se comparadas às tensões de placa. A composição destes esforços de plá
cas e chapa, bem como o procedimento de verificação das chapas trian
gulares de compensado, encontram-se no quadro 6.19.

Tanto na direção paralela, como na direção normal às fi
bras de face, a verificação dos compensados fez-se pelas intera-
çõens:

$$\frac{\sigma_{X}}{f_{pf}} + \frac{\sigma_{X}}{f_{pt}} \leq 1 \quad \text{dir. paralela às fibras de face da chapa compensada}$$

$$\frac{\sigma_{Y}}{f_{pf}} + \frac{\sigma_{Y}}{f_{pt}} \leq 1 \quad \text{dir. normal às fibras de face da chapa com pensada}$$

onde, $\sigma_{pf}$, $\sigma_{pf}$, $\sigma_{pt}$ e $\sigma_{pt}$, são, respectivamente as tensões de flexão e tração paralelas e normais às fibras de face do compensado e $f_{pf}$, $f_{pf}$, $f_{pt}$ e $f_{pt}$, as respectivas tensões de cálculo à fle
xão e a tração no compensado, dadas no capítulo 6.

A tensão na direção normal às fibras de face do compensado mostrou-se superior ao valor admissível. Mesmo assim, as dimen
soes foram mantidas, visto estes valores máximos de tensões proce-
derem da hipótese de indeslocabilidade dos apoios da placa, o que na realidade não ocorre. As tensões ao longo da placa tenderão a se redistribuir, diminuindo seus valores máximos.
Quadro 6.19. Verificação das chapas triangulares de compensado da tremonha do silo

Os deslocamentos máximos normais ao plano da chapa compen sada, flechas devido ao carregamento normal a sua superfície, são calculados, a exemplo do feito para as chapas de compensado do corpo do silo, a partir dos deslocamentos de referência, dados no quadro 4 do Anexo 3.

Obedecendo às condições de vinculação da placa, suas dimensões e carregamentos, no quadro 6.20 são apresentados o valor deste deslocamento da chapa triangular da tremonha do silo e os dados necessários a sua determinação.

Quadro 6.20. Flecha máxima das chapas triangulares da tre monha do silo, devido ao carregamento normal

Este deslocamento, embora menor que os máximos encontrados para as chapas compensadas do corpo do silo, ver quadro 6.5, também são significativos em relação a espessura da chapa, trazendo limitações à hipótese de flexão pura, utilizada para solução da
chapa compensada em sua "ação de placa".

A exemplo do feito no corpo do silo (item 6.3.1.1-a), os procedimentos de cálculo foram mantidos.

b- Verificação das ligações das chapas compensadas

As chapas triangulares da tremonha do silo são interligadas ao longo das arestas inclinadas da tremonha, através de peças de madeira maciça e parafusos auto-atarraxantes, 1/4" x 60mm (figura 6.24).

Estes parafusos, cravados perpendicularly às fibras do elemento de ligação das chapas, estão sujeitos, simultaneamente, a arranque direto e esforços laterais, inclinados em relação às fibras do elemento de ligação (figura 6.25). O esforço de arranque direto tem valor \( q_{sa} = \gamma_{an} \) e o esforço lateral \( q_{sl} = 2,65 \gamma_{an} \).

O número de parafusos auto-atarraxantes, necessários para absorver estes esforços é obtido cumulativamente, em função das cargas admissíveis nestes parafusos, para cada tipo de solicitação, dadas no item 5.2, do capítulo 5.

O quadro 6.21 mostra este número, bem como, todos os de mais dados necessários à sua determinação.

<table>
<thead>
<tr>
<th>Arranque Direto</th>
<th>Esforço Lateral</th>
<th>Número total de parafusos por metro</th>
<th>Espaçamento Entre Parafusos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga admissível para arranque normal às fibras de madeira ( \gamma_{an} ) ( 1,92 ) KN/m</td>
<td>Carga admissível ( q_{sa} = \gamma_{an} ) ( 1,40 ) KN/m</td>
<td>( 2,94 )</td>
<td>( 2,65 ) KN/m</td>
</tr>
<tr>
<td>( q_{sa} = \gamma_{an} ) ( KN/m )</td>
<td>( q_{sl} = 2,65 \gamma_{an} ) ( KN/m )</td>
<td>( 14,97 )</td>
<td>( 11,26 )</td>
</tr>
<tr>
<td>( 5,65 )</td>
<td>( 7,90 )</td>
<td>( 7,50 )</td>
<td></td>
</tr>
</tbody>
</table>

1- \( \gamma_{an} \) dado pelo quadro 6.16
2- todos os cálculos foram feitos com \( \gamma_{fa} \) na direção das fibras do compensado, e a colocação dos parafusos é ao longo do lado inclinado da chapa triangular.

Quadro 6.21. Espaçamento entre parafusos auto-atarraxantes na interligação das chapas compensadas, ao longo das arestas da tremonha do silo.
Estas chapas triangulares de compensado, interligadas, constituem a tremonha piramidal do silo que se apoia diretamente em sua viga de sustentação. A ligação entre as chapas e a viga foi feita por parafusos auto-atarrazantes, 1/4" x 60 mm.

Estes parafusos, cravados normalmente à superfície de apoio da chapa compensada na viga, estão sujeitos a esforços laterais, normais às fibras da viga, \( q_{sl}^Y = 2r_{an} \frac{1}{l_x} + r_{vt} \) (fig.6.30).

A quantidade de parafusos necessária na ligação, função da carga admissível nos parafusos para esforços laterais normais às fibras da madeira, igual a 1,32 KN, conforme item 5.2 do capítulo 5, é dada no quadro 6.22. Apresenta-se também neste quadro todos os valores necessários à determinação.

<table>
<thead>
<tr>
<th>( r_{an} )</th>
<th>( r_{vt} )</th>
<th>( q_{sl}^Y )</th>
<th>( r_{sld} )</th>
<th>( \text{no parafusos necessários} )</th>
<th>( \text{espaçamento adotado} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN/m</td>
<td>KN/m</td>
<td>KN/m</td>
<td>KN</td>
<td></td>
<td>cm</td>
</tr>
<tr>
<td>5,65</td>
<td>11,96</td>
<td>25,56</td>
<td>1,32</td>
<td>19,36</td>
<td>5,00</td>
</tr>
</tbody>
</table>

1 - dado no quadro 6.16
2 - dado no quadro 6.17
3 - \( q_{sl}^Y = 2r_{an} \frac{1}{l_x} + r_{vt} \)
4 - dado no capítulo 5, item 5.2

Quadro 6.22. Espaçamento entre parafusos auto-atarrazantes na ligação das chapas de compensado da tremonha do silo e a viga de sustentação.

c- Verificação da viga de sustentação da tremonha

Esta viga, conforme visto no item 6.2.1.1-b, além de sustentar a tremonha, "funciona" também como 1º anel de enrijecimento do silo, estando submetida a carregamentos que são sumarizados na figura 6.33.

Ao transmitir estas cargas aos seus apoios, a viga fica também submetida a esforços de compressão \( N_v = -0,87 Q_v^h \cdot l_v \), conforme o item 6.2.2.3-a, figura 6.34.

Desta forma, sua análise, foi feita, à ação de carregamentos que provocam esforços de flexo-compressão oblíqua.

O quadro 6.23 apresenta os valores destes carregamentos, considerando es transversais uniformemente distribuídos ao longo do comprimento e o longitudinal concentrado no eixo da seção transversal da viga.
Para os cálculos, o comprimento da viga, $l_v$, foi considerado conforme mostra a figura 6.58.

<table>
<thead>
<tr>
<th>$Q_s^{v}$</th>
<th>$\Gamma_{Ah}$</th>
<th>$Q_{v}^{v}$</th>
<th>$Q_{v}^{h}$</th>
<th>$N_{v}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN/m</td>
<td>KN/m</td>
<td>KN/m</td>
<td>KN/m</td>
<td>KN</td>
</tr>
<tr>
<td>16,40</td>
<td>5,05</td>
<td>16,40</td>
<td>11,35</td>
<td>-11,45</td>
</tr>
</tbody>
</table>

1 - força da sustentação da tremonha do silo

$$Q_{sust}^{v} = \left(\rho_b \cdot \bar{A} + G_{mat} + G_i\right) / \eta_v +$$ (figura 6.31)

2 - dado no quadro 6.2, para a primeira chapa compensada

3 - carga vertical na viga $Q_{v}^{v} = Q_{sust}^{v}$ (figura 6.33)

4 - carga horizontal na viga $Q_{v}^{h} = Q_{sust}^{v} - \Gamma_{Ah}$ (figura 6.33)

5 - compressão axial na viga $N_{v} = -0,87 \cdot Q_{v}^{h} \cdot l_{v}$ (figura 6.34)

Quadro 6.23. Cargas sobre a viga de sustentação da tremonha do silo

1. $l_v$ - comprimento da viga de sustentação da tremonha do silo.

Fig. 6.58. Comprimento teórico da viga de sustentação da tremonha do silo

Para absorver os esforços provenientes destes carregamentos, esta viga foi admitida composta por duas peças de madeira macia da espécie Peroba Rosa, recortadas de forma a permitir o apoio das chapas da tremonha, conforme a figura 6.14.
Visando a admitir os eixos principais de inércia da peça composta coincidentes com eixos coordenados globais, ajustou-se as peças de forma a ter-se o produto de inércia da seção nulo, em relação a estes eixos (figura 6.59).

\[ X_G = 100 + 13,1x/21 \quad \Rightarrow \quad Y_G = 6,5 \, \text{cm} \]

\[ I_{xy} = 0 \quad \Rightarrow \quad X_G = 5,63 \, \text{cm} \quad \Rightarrow \quad X_G = 8,2 \, \text{cm} \]

Fig. 6.59. Posição relativa das peças que constituem a viga de sustentação da tremonha do silo.

A fim de simplificar o estudo teórico, esta viga assimétrica, foi admitida equivalente a uma viga simétrica, constituída por peças de seção retangular, (figura 6.60).

A ligação entre as peças, proporcionam deslizamentos entre elas, que se traduzem em redução das propriedades estáticas da seção composta.

A norma DIN 1052 (1973) estabelece um conceito de inércia eficaz para estas peças compostas, função da elasticidade da ligação. Cada tipo de união é caracterizada por um módulo de deslizamento, obtido experimentalmente e tabelado para as combinações mais comuns de peças retangulares, que expressa à carga necessária para produzir um deslocamento relativo unitário entre as peças individuais da seção composta.

A partir deste módulo de deslizamento, é definido o fator de redução da inércia do conjunto, levando em consideração, além do tipo de união, a disposição e espaçamento dos elementos...
de ligação, o tipo de madeira, a forma de montagem e proporção das peças individuais e o vão, entre apoios, da viga composta.

\[ y_G = \frac{16.3 \cdot 1.5 + 6(h_1/2 + 3) \cdot h_1}{16.3 + 6 \cdot h_1} \]

** na direção horizontal desprezou-se a pequena excentricidade construtiva do CG

** na direção vertical manteve-se a posição relativa do CG

\[ h_1 = 13.1 \text{ cm} \]

Fig. 6.60. Seção simétrica para a viga de sustentação da tremonha do silo

O quadro 6.24 apresenta os momentos de inércia da seção composta, admitindo a ligação entre as peças individuais por duas linhas de pregos 19 x 36, espaçados a cada 5cm.

Na direção y, como os momentos estáticos das peças individuais em relação do eixo principal da seção composta, são todos nulos, a elasticidade da ligação não afeta a rigidez da peça composta. Assim, o momento de inércia da seção composta, nesta direção, equivale ao de uma peça única de mesmas dimensões.
I = \frac{n_k}{i-1} I_4 + \left(\frac{1}{1+k}\right) \frac{n_s}{i=1} \left(\frac{A_i A_i^2}{I_i}\right)

<table>
<thead>
<tr>
<th>\Sigma I_{y1}</th>
<th>\Sigma I_{x1}</th>
<th>\Sigma (A_i A_i^2)</th>
<th>\Sigma C</th>
<th>\Sigma \frac{\tau_{y}E_w \cdot e'}{l' \cdot C} \cdot \frac{A_1 + A_2}{A_1 A_2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1260</td>
<td>1260</td>
<td>1160</td>
<td>1931</td>
<td>600</td>
</tr>
</tbody>
</table>

1- na direção y não existe a peça afetada pelo coeficiente da ligação
2- módulo de deslocamento, para seções de duas peças, pregadas. Dado na tabela 3 da norma DIN 1052 (1973)
3- definida no artigo 5.4 da norma DIN 1052 (1973), para seção de duas peças
\(E_w = 9430 \text{ MPa} \rightarrow \text{peroba rosa}
\(e' = 0,05/2 \rightarrow \text{espaçamento entre pregos, em metros. Definido na figura 4 da norma DIN 1052 (1973)}

Quadro 6.24. Momentos de inércia da seção composta simétrica da viga de sustentação da tremonha do silo

Na análise dos esforços de flexo-compressão, a viga foi considerada simplesmente apoiada para as ações no plano vertical e engastada em suas extremidades, para as ações no plano horizontal, conforme explicado no item 6.2.2.3, "funcionando" como peça curta aos esforços de compressão, como mostra o quadro 6.25.
Quadro 6.25. Esbeltez da viga de sustentação da tremonha do silo

cl- Verificação da viga aos esforços normais

Sendo peça curta, a verificação à flexo-compressão, baseada nas recomendações da norma alemã, foi feita desconsiderando os aspectos de flambagem, através das interações:

\[
\frac{\sigma_{vc} + \sigma_{vf} \cdot f_{wcd}}{f_{wfd}} \leq 1 \rightarrow \text{para os pontos comprimidos da seção}
\]

\[
\frac{\sigma_{vc} + \sigma_{vf} \cdot f_{wcd}}{f_{wfd}} \leq 1 \rightarrow \text{para os pontos tracionados da seção}
\]

onde, \( \sigma_{vf} \) e \( \sigma_{vc} \) são as tensões atuantes na peça, respectivamente, devido à flexão oblíqua e a compressão axial, e \( f_{wcd} \), \( f_{wtd} \) e \( f_{wcd} \) as tensões de cálculo para a Peroba Rosa.

Como a norma alemã recomenda que a tensão de cálculo à tração, \( f_{wtd} \), seja considerada igual a tensão de cálculo à compressão, \( f_{wcd} \), estas interações confundem-se numa só, tanto para os pontos comprimidos como para os tracionados da seção:

\[
\frac{\sigma_{vc}}{f_{wcd}} + \frac{\sigma_{vf}}{f_{wfd}} \leq 1
\]

Devido às condições de vinculação da viga, esta foi verificada, aos esforços advindos da flexo-compressão oblíqua em duas seções, onde a composição dos esforços teriam seus valores máximos. Na seção central da viga, considerou-se as flexões vertical e horizontal e a compressão axial, enquanto na seção sobre o apoio, considerou-se apenas a flexão horizontal e a compressão axial.
No plano horizontal, as tensões de flexão atuantes foram admitidas, distribuídas linearmente, conforme a Lei Navier. No plano vertical, devido ao deslizamento relativo entre as peças ligadas, a distribuição é descontínua; para determiná-la recorreu-se ao artigo 5.4 da norma DIN 1052 (1973). As tensões normais de compressão foram admitidas uniformemente distribuídas na seção.

Os quadros 6.26 e 6.27 sumarizam as tensões normais atuantes na viga, na seção sobre o apoio e na seção central, respectivamente, bem como, apresentam o critério de verificação das mesmas a estes esforços.

Observa-se, que as tensões no ponto 1 e principalmente no ponto 2 da seção central da viga são superiores às admissíveis. Entretanto, estes valores na realidade não devem ocorrer, porquanto, as chapas de compensada da tremonha e do corpo do silo solida- rizadas à viga, devem contribuir para redistribuir estes valores máximos.

Assim, as dimensões da viga e os procedimentos de cálculo foram mantidos na expectativa que a experimentação do capítulo 7 confirme estas suposições.

c2- Verificação da viga aos esforços de cisalhamento

Segundo o artigo 5.4 da norma alemã DIN 1052 (1973), os eixos neutros da seção composta da viga de sustentação da tremonha posicionam-se como mostra a figura 6.61.

As tensões de cisalhamento, em cada plano, são obtidas pela expressão tradicional \( \tau = \frac{V.S}{D_b} \), atingindo a combinação máxima para valores do ponto de encontro dos eixos neutros.

A verificação da seção a estes esforços máximos foi feita em função da tensão admissível ao cisalhamento longitudinal na Peroba Rosa, \( f_{wad} = 1,2\ MPa \), segundo a ABNT NBR-7190 (1982) seguin- do o critério:

\[
\frac{\tau_v}{f_{wad}} \leq 1
\]

onde, \( \tau_v \) é a tensão de cisalhamento atuante na seção.
\[ I_x = 1360 \times 10^{-8} \text{ m}^4 \]
\[ I_y = 1260 \times 10^{-8} \text{ m}^4 \]
\[ l_y = 1,16 \text{ m} \]

<table>
<thead>
<tr>
<th>Ponto da Seção</th>
<th>Flexão Horizontal</th>
<th>Compressão Axial</th>
<th>Verificação</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[ Q^h_y = 11,35 \text{ KN/m} ]</td>
<td>[ N_y = -11,45 \text{ KN} ]</td>
<td>[ M^h_y = 1,27 \text{ KN.m} ]</td>
<td>[ S_y^h = 126,6 \times 10^{-4} \text{ m}^2 ]</td>
</tr>
<tr>
<td>1</td>
<td>3,02 MPa</td>
<td>-0,90 MPa</td>
<td>0,12</td>
<td>OK</td>
</tr>
<tr>
<td>2</td>
<td>3.07 MPa</td>
<td>-0,90 MPa</td>
<td>0,33</td>
<td>OK</td>
</tr>
<tr>
<td>3</td>
<td>3,02 MPa</td>
<td>-0,90 MPa</td>
<td>0,12</td>
<td>OK</td>
</tr>
<tr>
<td>4</td>
<td>3,02 MPa</td>
<td>-0,90 MPa</td>
<td>0,33</td>
<td>OK</td>
</tr>
<tr>
<td>5</td>
<td>8,06 MPa</td>
<td>-0,90 MPa</td>
<td>0,49</td>
<td>OK</td>
</tr>
<tr>
<td>6</td>
<td>8,06 MPa</td>
<td>-0,90 MPa</td>
<td>0,70</td>
<td>OK</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>-0,90 MPa</td>
<td>0,11</td>
<td>OK</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-0,90 MPa</td>
<td>0,11</td>
<td>OK</td>
</tr>
</tbody>
</table>

\[ M^h_y = Q^h_y \times \frac{h^2}{12} \]
\[ \sigma_{vf} \text{ e } \sigma_{vc} \text{ obedecem a distribuição linear de Navier} \]
\[ f_{wfd} = 13,5 \text{ MPa}; \ f_{wcd} = 8,5 \text{ MPa}, \text{ ABNT-NBR 7190 (1982)} \]

<table>
<thead>
<tr>
<th>Seção</th>
<th>TV</th>
<th>T0</th>
<th>TV</th>
<th>T0</th>
<th>T0</th>
<th>T0</th>
<th>T0</th>
<th>T0</th>
<th>T0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14,90</td>
<td>1,52</td>
<td>13,38</td>
<td>0,90</td>
<td>1,19</td>
<td>tensões normais que a admissível</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14,90</td>
<td>1,52</td>
<td>16,42</td>
<td>0,90</td>
<td>1,32</td>
<td>tensões normais que a admissível</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13,59</td>
<td>1,52</td>
<td>15,11</td>
<td>0,90</td>
<td>1,01</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13,59</td>
<td>1,52</td>
<td>12,07</td>
<td>0,90</td>
<td>0,79</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4,33</td>
<td>4,06</td>
<td>8,19</td>
<td>0,90</td>
<td>0,52</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4,33</td>
<td>4,06</td>
<td>0,27</td>
<td>0,90</td>
<td>0,08</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1,11</td>
<td>0</td>
<td>1,11</td>
<td>0,90</td>
<td>0,02</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,66</td>
<td>0</td>
<td>0,66</td>
<td>0,90</td>
<td>0,15</td>
<td>OK</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1= momento no centro da viga = M₀ = Gt 1/2/8
2= momento no centro da viga engastada = M₀ = Gt 1/2/24
3= de acordo com o artigo 5.4 da norma DIN 1052 (1973), considerando-se a seção líquida nos cálculos. Os pregos estão na zona tracionada da peça
4= obedecendo a distribuição linear de Navier
5= f_wid = 13.5 MPa; f_wid = 6.5 MPa, ABNT-NBR (1982)

Quadro 6.27. Verificação aos esforços normais, da viga de sustentação da tremonha, na seção central.
Fig. 6.61. Posição dos eixos neutros da seção composta da viga da tremo

O quadro 6.28 apresenta os valores destas tensões de cisalhamento e todos os dados necessários aos cálculos, bem como, a verificação da seção.

<table>
<thead>
<tr>
<th>TENSAES DE CISALHAMENTO - MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensões em cada plano</td>
</tr>
<tr>
<td>Plano</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>XZ</td>
</tr>
<tr>
<td>YZ</td>
</tr>
</tbody>
</table>

1 - valor máximo do esforço cortante - V = C_V·1V/2
2 - momento estático. Em relação ao eixo neutro da direção X, foi obtido pela parte da seção não afetada pela ligação
3 - \( \tau_y = (\tau_{yX}^2 + \tau_{yY}^2)^{1/2} \)
4 - f_{wsd} = 1,2 MPa, segundo a ABNT-NBR 7190 (1982)

Quadro 6.28. Verificação da viga de sustentação de tremo

nha, ao cisalhamento
A própria norma ABNT-NBR 7190 (1982) reconhece em seu artigo 24, que esta tensão de cisalhamento, determinada como esforço cortante máximo, não se desenvolve em vigas de madeira. A norma admite que os valores de tensão sejam reduzidos ao longo do comprimento da viga, numa proporção função de sua altura.

Para a viga em estudo, devido a seu pequeno comprimento, esta redução levou a valores de tensões de cisalhamento desprezíveis, se comparados com o valor admissível. Assim, a seção composta e os cálculos foram mantidos.

c3- Verificação da viga aos deslocamentos transversais

Os deslocamentos transversais da viga de sustentação da tremonha, provocados pelas cargas uniformemente distribuídas, vertical e horizontal, são acrescidos pela ação do esforço de compressão, tal como foi feito para a flexo-tração nos anéis de enrijecimento, item 6.3.1.1-c; os deslocamentos corrigidos, são obtidos de forma simplificada, conforme o quadro 6.29.

A verificação da viga a estes deslocamentos transversais foi feito em função da recomendação da norma alemã, que estes não ultrapassem o limite $\frac{v}{200}$, obedecendo ao critério:

$$\frac{\omega_v'}{\bar{\omega}} \leq 1$$

onde $\omega_v'$ é a flecha calculada e corrigida pela ação da compressão e $\bar{\omega}$ é a flecha admissível, igual a $\bar{\omega} = 5,8$ mm.

c4- Verificação da ligação entre as peças individuais da seção composta

Todos os cálculos e verificações feitos para a viga de sustentação da tremonha, dependem da eficiência da ligação entre as peças individuais, que constituem a seção composta da viga. Do item 6.3.1.2-c sabe-se que esta ligação foi admitida em duas linhas de pregos 19x36 cravados a cada 5 cm, espaçadas de 3 cm.
**Flechas Devido a Flexo - Compressão**

<table>
<thead>
<tr>
<th>Viga SIMPLESMENTE Apoiadas</th>
<th>VIGAS ENGASTADAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N_v )</td>
<td>( Q_v )</td>
</tr>
<tr>
<td>( q_v )</td>
<td>( q_v' )</td>
</tr>
<tr>
<td>( l_v )</td>
<td>( l_v )</td>
</tr>
<tr>
<td>( w_v ) ( = 5 \cdot Q_v \cdot l_v^4 / 384 \cdot E_v' \cdot I )</td>
<td>( w_v' ) ( = 24 \cdot w_v \cdot N_v / l_v^2 )</td>
</tr>
<tr>
<td>( w_v' ) ( = w_v \left( q_v + q_v' \right) / q_v )</td>
<td>( w_v ) ( = Q_v \cdot l_v^4 / 384 \cdot E_v' \cdot I )</td>
</tr>
<tr>
<td>( q_v' ) ( = 8 \cdot w_v \cdot N_v / l_v^2 )</td>
<td>( q_v' ) ( = 24 \cdot w_v \cdot N_v / l_v^2 )</td>
</tr>
</tbody>
</table>

**Flechas na Viga de Sustentação da Treminha**

<table>
<thead>
<tr>
<th>Vertical</th>
<th>Horizontal</th>
<th>Verificação</th>
</tr>
</thead>
<tbody>
<tr>
<td>( t \cdot Q_v )</td>
<td>( t \cdot Q_v )</td>
<td>( w_v )</td>
</tr>
<tr>
<td>( \text{KN/m} )</td>
<td>( \text{KN/m} )</td>
<td>( \text{mm} )</td>
</tr>
<tr>
<td>16,40</td>
<td>4,52</td>
<td>0,31</td>
</tr>
</tbody>
</table>

1- Dados no Quadro 6.23
2- Viga simplesmente apoiada - \( I_x = 1360 \cdot 10^{-8} \cdot m^4 \) (Quadro 6.24)
3- \( E_v = \frac{2}{3} E_w \)
4- \( N_v = -11,45 \text{ KN} \)
5- Viga engastada - \( I_y = 1260 \cdot 10^{-8} \cdot m^4 \) (Quadro 6.24)
6- \( E_v = \frac{2}{3} E_w \)
7- \( w_v' = \left( w_v' \right)^2 + \left( w_v \right)^2 \cdot 1/2 \)

Quadro 6.29. Verificação da viga de sustentação da treminha aos deslocamentos transversais.
Estes pregos 19x36, são verificados em função do fluxo cisalhante que se desenvolve na seção da interface das peças ligadas ao carregamento vertical:

\[
\frac{\phi_{\text{pregos}}}{\phi_{\text{pregos}}} \leq 1
\]

onde, \(\phi_{\text{pregos}}\), é o fluxo cisalhante atuante nos pregos, e \(\phi_{\text{pregos}}\), é o fluxo admissível nos pregos devido à sua capacidade de carga.

Segundo o artigo 5.4.1 da norma alemã, o fluxo atuante na seção da interface vale \(\phi = VS/I(1+k)\). O quadro 6.30 apresenta a verificação da ligação a esta solicitação.

<table>
<thead>
<tr>
<th>Fluxo Atuante</th>
<th>Fluxo Admissível</th>
<th>Verificação</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{V}{\phi_{\text{pregos}}\text{KN/m}})</td>
<td>(\frac{\phi_{\text{pregos}}\text{KN}}{\phi_{\text{pregos}}\text{pregos/m}})</td>
<td>(\frac{\phi_{\text{pregos}}\text{pregos}}{\phi_{\text{pregos}}\text{pregos}} \leq 1)</td>
<td></td>
</tr>
<tr>
<td>9,51</td>
<td>27,05</td>
<td>0,74</td>
<td>42</td>
</tr>
</tbody>
</table>

1 - momento estático da área hachurada da figura em relação ao eixo neutro
2 - devido à carga distribuída vertical + \(q_{V} = 16,40\text{ KN/m}\)
3 - \(\phi = V, S / I(1+k)\)
4 - prego 19x36 + carga admissível segundo a DIN 1052 (1973), artigo 11.3方案: \(F_{\text{tnld}} = 1,5 \times (500\delta_{n}^{2}/1+\delta_{n})\), para a penetração de 12 \(\delta_{n}\) (kgf)

Quadro 6.30. Verificação da ligação, pregada entre as peças da seção composta da viga de sustentação da tremonha
c5- Verificação dos apoios da viga de sustentação da tremonha

Para transferir o carregamento vertical aos pilares do silo, a viga apoia-se nestes, conforme mostra a figura 6.35 do item 6.2.2.3-b, gerando esforços de compressão normal em suas próprias fibras e compressão axial nos pilares.

A verificação a estes esforços foi feita em relação à compressão normal na viga, admitindo-se como tensão admissível à compressão normal na Peroba Rosa, o valor recomendado pela ABNT-NBR 7190 (1982), $f_{wcnd} = 2,54 \text{ MPa}$.

O quadro 6.31 apresenta esta verificação e todos os dados necessários aos cálculos.

<table>
<thead>
<tr>
<th>ÁREA DE APOIO</th>
<th>COMpressão NORMAL No APOIO DA Viga</th>
</tr>
</thead>
<tbody>
<tr>
<td>PILAR-EXTERNO</td>
<td>$A_{apoiO} \times 10^{-4} \text{m}^2$</td>
</tr>
<tr>
<td>VIGA</td>
<td>34,38</td>
</tr>
</tbody>
</table>

$1^o$ reação da viga no pilar

$2^o$ $f_{wcnd} = 2,54 \text{ MPa}$, seguindo ABNT-NBR 7190 (1982)

Quadro 6.31. Verificação da compressão normal nos apoios da viga de sustentação da tremonha do silo

Embora o valor da tensão de compressão normal às fibras da Peroba Rosa no apoio apresente-se pouco superior ao admissível, as dimensões das peças e cálculos foram mantidos, porquanto, os parafulhos de 1/2" que ligam estruturalmente a viga e os pilares (figura 6.35) poderem auxiliar no apoio, quando de eventuais deformações.

d- Verificação dos pilares externos do silo

Os pilares externos do silo, constituídos por duas pe-
ças de madeira maciça, 6x16 cm², sustentam tanto o corpo como a tremonha do silo, ficando submetidos a esforços de compressão axial, admitidos centrados em relação a sua seção transversal.

O carregamento devido ao corpo do silo, transmite-se aos pilares externos, através dos pilares internos, conforme mostra a figura 6.17 do item 6.2.1.2 e o carregamento advindo da tremonha, transfe-re-se aos pilares pela viga de sustentação da tremonha como explicado no item 6.2.2.3 e ilustrado na figura 6.35.

Considerando o pilar simplesmente apoiado em suas extremidades, seu comprimento de flambagem foi determinado como mostra a figura 6.62.

* comprimento de flambagem do pilar + \( h_p^{\text{ext}} \) = 1,67 m

Fig. 6.62. Comprimento de flambagem dos pilares externos do silo

A verificação aos esforços de compressão axial foi feita em função da tensão admissível a flambagem, definida na norma ABNT-NBR 7190 (1982) em relação a esbeltez da peça:
onde, $\sigma_{ Pc}^{ ext}$, é a tensão de compressão atuante no pilar, e, $\sigma_{f1}$, a tensão admissível a flambagem. Cada peça, 6x16 cm², que constitui o pilar duplo, foi admitida suportar metade da carga transferida ao conjunto.

O quadro 6.32 apresenta todos os dados necessários a esta verificação.

### Características das peças que constituem o pilar externo duplo do silo

<table>
<thead>
<tr>
<th>Ebeltez</th>
<th>Tensão admissível</th>
<th>Tensão atuante no pilar</th>
<th>Verificação</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 $l_{f1}$</td>
<td>$10^{-8}m^4$</td>
<td>$10^{-2}m$</td>
<td>$\sigma_{f1}$</td>
<td>$10^2$</td>
</tr>
<tr>
<td>288</td>
<td>96</td>
<td>1,73</td>
<td>96,5</td>
<td>2,50</td>
</tr>
</tbody>
</table>

1: peça longa $l_{f1} = \sigma_{ Pc}^{ ext} = 1,67 m$
2: $\sigma_{f1} = \frac{1000}{2,013/4,00} = ABNT-XBR 7190 (1982)$
3: Compressão no pilar $t$: corpo do silo $\sigma_{ Pc}^{ int} = 28,78 KN$ (quadro 6.12)
   tremonha $\sigma_{ Pc}^{ t} = 9,02 KN$
   peso próprio $\sigma_{ Pc}^{ p} = 0,26 KN$
   total $\sigma_{ Pc}^{ ext} = \sigma_{ Pc}^{ int} + \sigma_{ Pc}^{ t} + \sigma_{ Pc}^{ p}$
   $\sigma_{ Pc}^{ ext} = 48,06 KN$

Quadro 6.32. Verificação dos pilares externos do silo aos esforços de compressão axial

6.3.1.3- Verificação dos elementos e ligações da cobertura do silo

a- Verificação das terças

Foram verificadas somente as terças da cumeira, devido serem as de menor vão e desprezou-se nos cálculos a influência de seus pequenos balanços, considerando-as simplesmente apoiadas.

O quadro 6.33 apresenta todos os dados necessários às verificações, quanto aos aspectos de flexão e deslocamentos transversais.
<table>
<thead>
<tr>
<th>Características da Viga</th>
<th>Carregamentos</th>
<th>Momento Fletor Atuante</th>
<th>Tensão de Flexão</th>
<th>Verificações</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compr. n</td>
<td>hr x 10^{-2}m^2</td>
<td>I</td>
<td>Mf</td>
<td>tf</td>
<td>tfw</td>
</tr>
<tr>
<td>2,30</td>
<td>6x11,2</td>
<td>702</td>
<td>0,22</td>
<td>2,00</td>
<td>1,10</td>
</tr>
</tbody>
</table>

|                      | 1040          | 9,28                  | 0,77            | 0,81         |

- seção equivalente com altura média
- devido ao peso próprio, dado no item 6.3.1
- cobertura de montagem ou devido à instalação de equipamento para carregar o silo
- \( f_w = 13,5 \text{ MPa}, \) peroba rosa
- \( a = 1/200 \) = \( \frac{a}{n} = 0,005 \text{ mm} \)

Quadro 6.33. Verificação das terças da cobertura do silo, a ação do peso próprio

b- Verificação das ligações das terças aos pilares do silo

Devido às pequenas solicitações, provenientes do peso próprio, as ligações das terças aos pilares do silo foram estabelecidas em função de aspectos construtivos e verificadas no item 6.3.2 a ação do vento.

Para a ligação das terças da cunha aos pilares admi-tiu-se parafusos auto-atarraxantes e cantoneiras metálicas, equan-to, para as terças de beiral, apenas parafusos passantes, porcas e arruelas, conforme mostra a figura 6.63.

![Diagrama de Ligação das Terças](image)

**Fig. 6.63. Ligação das terças da cobertura aos pilares do silo**
6.3.2. Verificação a ação do vento

Neste tipo de construção leve, os esforços do vento são principalmente perigosos, quando o silo se encontra vazio.

Os cuidados foram em relação ao tombamento do conjunto e a possibilidade de levantamento do silo, com consequentes esforços nos pilares e ligações deste com a fundação.

A ação do vento foi considerada, através da força de arrasto que fica submetido o silo, quando atingido por rajadas de vento perpendiculares às suas faces.

O quadro 6.34 mostra esta ação com os valores seguindo as recomendações da norma ABNT-NBR 6125 (1982) aplicáveis a silos de seção hexagonal, e o estudo de Pris (apud BLESSMANN, 1983) conforme explicado no item 2.3 do capítulo 2.

<table>
<thead>
<tr>
<th>FORÇA DE ARRasto</th>
<th>Velocidade básica do vento</th>
<th>Velocidade característica do vento</th>
<th>Pressão dinâmica</th>
<th>Coeficiente de arrasto</th>
<th>Força de arrasto por metro de altura do silo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_0$ m/s</td>
<td>$V_k$ m/s</td>
<td>$Q$ KN/m$^2$</td>
<td>$C_a$</td>
<td>$Q_a$ KN/m</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>35,5</td>
<td>0,78</td>
<td>1,32</td>
<td>2,51</td>
</tr>
</tbody>
</table>

1 - considerando $S_1 = 1,0; S_2 = 0,93; S_3 = 0,93 \Rightarrow V_k = V_0 S_1 S_2 S_3$

2 - $Q = V_k^2/1600$ (KN/m$^2$)

3 - Vento incidindo na face do hexagono, $H/D = \infty$. Valor devido a Pris em 1961 (Apud BLESSMANN, 1983)

4 - $Q_a = 2.44 C_a Q$

Quadro 6.34. Força de arrasto do vento sobre o silo

6.3.2.1. Verificação ao tombamento do conjunto

A força de arrasto do vento provoca tombamento do silo, enquanto, o peso próprio tende a estabilizar o conjunto como ilus-
tra a figura 6.64.

- momento de tombamento
- momento estabilizante
- segurança ao tombamento

$$M_{tomb} = 125,40 \text{ KN.m}$$
$$M_{est} = 246,63 \text{ KN.m}$$
$$\gamma_{tomb} = \frac{M_{est}}{M_{tomb}} \Rightarrow \gamma_{tomb} = 1,97$$

Fig. 6.64. Tombamento do silo

Verifica-se que com o tipo de fundação proposto, o conjunto é estável, tendo uma segurança ao tombamento próxima a dois.

6.3.2.2- Verificação dos pilares externos do silo e suas ligações com a fundação

O conjunto de pilares externos do silo foi considerado
como uma seção composta única (figura 6.65), submetida, simultaneamente, às ações do vento e do peso próprio, que causam esforços de flexo-compressão.

- momento de inércia do conjunto → \( I_x = \sum (A_i a_i^2) \rightarrow I = 848,4 \times 10^{-4} \text{m}^4 \)
- momento resistente das peças → \( W_1 = W_5 = 83,18 \times 10^{-3} \text{m}^3 \)
  \( W_2 = W_6 = 78,56 \times 10^{-3} \text{m}^3 \)
  \( W_3 = W_4 = 1696,8 \times 10^{-3} \text{m}^3 \)

Fig. 6.65. Seção dos pilares externos

O quadro 6.35 mostra as solicitações e os respectivos esforços devido ao vento e ao peso próprio do silo vazio, bem como, à verificação de cada peça dos pilares, em função da tensão admissível a flexo-compressão, definida nos artigos 57 e 58 da norma ABNT-NBR 7190 (1982):
onde, $\sigma_{ext}$ é a tensão atuante em cada peça do pilar, e $\sigma_{fc}$, a tensão admissível.

**Quadro 6.35.** Verificação das peças individuais que constituem os pilares externos do silo, à ação do vento

Os pilares comprimidos transferem seus carregamentos por contato direto com a fundação, enquanto que os pilares tracionados o fazem mediante ligações com parafusos passantes, porcas e arruelas.

O quadro 6.36 apresenta a quantidade de parafusos necessários para ligação das peças mais tracionadas, utilizada para todas as outras. Quantidade esta, determinada em função das recomendações de LUCHESE e STAMATO (1967), para ligações parafusadas com peças de Peroba Rosa.
<table>
<thead>
<tr>
<th>Tensão</th>
<th>Secção</th>
<th>Tração</th>
<th>Parafuso</th>
<th>Carga admissível por parafuso</th>
<th>Número de Parafusos</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\sigma_{ext}}{p}$</td>
<td>$\frac{A_{ext}}{p}$</td>
<td>$\frac{F_{ext}}{p}$</td>
<td>$\frac{\sigma_{s}}{s}$</td>
<td>$\frac{F_{slid}}{slid}$</td>
<td>$N_{p}$</td>
<td>Este número de parafusos é para cada peça do pilar duplo do silo</td>
</tr>
<tr>
<td>1,28</td>
<td>6x16</td>
<td>12,29</td>
<td>1/2</td>
<td>7,0</td>
<td>2,0</td>
<td></td>
</tr>
</tbody>
</table>

1. dada no quadro 6.35
2. $F_{slid} = 5,7 \times 1,25 = 7,0$ - correção devido as cobrejuntas da ligação serem metálicas
3. número de parafusos por peça do pilar

Quadro 6.36. Número de parafusos na ligação dos pilares do silo à fundação

A figura 6.66 ilustra a fixação dos pilares na fundação. Foi utilizado uma peça metálica para possibilitar a ligação.

![Diagrama de ligação dos pilares do silo](image)
6.3.2.3. Verificação dos pilares internos do silo e suas emendas

Os pilares do silo têm duas emendas: uma, ao nível do 6º anel de enriquecimento, e outra, ao nível da viga de sustentação da tremonha, conforme o item 6.3.1.1-f.

O conjunto de pilares internos foi considerado como uma seção composta única, conforme mostra a figura 6.67, submetida a flexo-compressão.

$\sigma_{\text{m}}^0 = 7 \times 10^{-4} \text{ m}^2$

- momento de inércia do conjunto $I_x = \sum (A \delta)^2 \text{ m}^4$
- momento resistente dos pilares $W_1 = W_2 = 28.97 \times 10^{-3} \text{ m}^3$

Fig. 6.67. Seção dos pilares internos
A figura 6.68 ilustra os carregamentos que atuam sobre os pilares em relação às ações do vento e de peso próprio do silo vazio, para os níveis das emendas.

![Diagrama de carregamentos nos pilares](image)

**Fig. 6.68. Carregamentos nos pilares para os níveis de suas emendas**

O quadro 6.37 apresenta os esforços nos pilares para os dois níveis em que ocorrem as emendas, bem como, a verificação destes em função das tensões admissíveis a flexo-compressão.

No quadro 6.38 temos os esforços nas emendas e a verificação das mesmas em função das cargas admissíveis e quantidade de parafusos, já estabelecidas para cada emenda no item 6.3.1.1-f.

Foram verificadas somente as emendas dos pilares mais solicitados, sendo que nos pilares comprimidos, admitiu-se os esforços se transferindo pelo contato direto das peças ligadas.
**Tabela 6.37. Verificação dos pilares internos do silo a ação do vento**

<table>
<thead>
<tr>
<th>Emenda</th>
<th>Carregamentos máximos</th>
<th>Ligação</th>
<th>Número de parafusos existentes</th>
<th>Verificações</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Três</td>
<td>Tensão</td>
<td>F</td>
<td>n</td>
<td>exist</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.3</td>
<td>11.40</td>
<td>3</td>
<td>6</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>17.3</td>
<td>3.63</td>
<td>5</td>
<td>6</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>17.3</td>
<td>6.144</td>
<td>21.23</td>
<td>3.63</td>
<td>5</td>
</tr>
</tbody>
</table>

- Emendas: entre pareda dos pilares internos e externos.
- Verificações: n = 6 e n = 0.50.
- Observação: OK.

**Quadro 6.38, Verificação das emendas parafusadas dos pilares do silo**

<table>
<thead>
<tr>
<th>Emenda</th>
<th>Carregamentos máximos</th>
<th>Ligação</th>
<th>Número de parafusos existentes</th>
<th>Verificações</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Três</td>
<td>Tensão</td>
<td>F</td>
<td>n</td>
<td>exist</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.3</td>
<td>11.40</td>
<td>3</td>
<td>6</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>17.3</td>
<td>3.63</td>
<td>5</td>
<td>6</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>17.3</td>
<td>6.144</td>
<td>21.23</td>
<td>3.63</td>
<td>5</td>
</tr>
</tbody>
</table>

- Emendas: entre pareda dos pilares internos e externos.
- Verificações: n = 6 e n = 0.50.
- Observação: OK.
6.3.2.4. Verificação das terças da cobertura do silo e suas ligações aos pilares internos

Para esta verificação, na falta de dados mais precisos utilizou-se uma pressão de sucção máxima sobre as telhas de 1 KN/m². Isto produz nas terças uma carga linear, perpendicular ao plano da cobertura, em torno de 0,75 KN/m.

As terças, devido a esta carga de vento e o peso próprio, ficam sujeitas a esforços de flexão oblíqua, que foram analisados, segundo as direções vertical e horizontal, conforme a figura 6.69.

![Diagrama de cargas e esforços](image)

**Fig. 6.69. Carregamentos sobre as terças da cobertura**

O quadro 6.39 mostra as tensões e flechas nas terças, bem como, as verificações em função dos valores admissíveis. Foram analisadas somente as terças da cumeeira por serem as de maior vão, 2,30 m.

<table>
<thead>
<tr>
<th>Flexão na direção vertical</th>
<th>Flexão na direção horizontal</th>
<th>Composição</th>
<th>Valores Admissíveis</th>
<th>Verificações</th>
</tr>
</thead>
<tbody>
<tr>
<td>nomes do material</td>
<td>tensão</td>
<td>flecha</td>
<td>nomes do material</td>
<td>tensão</td>
</tr>
<tr>
<td>11N</td>
<td>N_T</td>
<td>N_T</td>
<td>N_T</td>
<td>N_T</td>
</tr>
<tr>
<td>10^-3KN.m</td>
<td>MPa</td>
<td>mm</td>
<td>KN.m</td>
<td>MPa</td>
</tr>
<tr>
<td>702</td>
<td>0,33</td>
<td>2,63</td>
<td>0,28</td>
<td>402</td>
</tr>
</tbody>
</table>

1 - considerando a terça retangular = 6x11,2 cm²
2 - soma algébrica das tensões $c_T = c_T$
3 - $w_T = \left(\frac{w_T}{2} + \sqrt{\frac{w_T}{2}}\right) / 2$

Quadro 6.39. Verificação das terças da cobertura aos esforços do vento
As cargas atuantes nos parafusos das ligações destas terças aos pilares internos do silo são inferiores aos valores admisíveis, para o número de parafusos estabelecido no item 6.3.1.3-b.

6.4- Desenhos do Silo

Os desenhos de conjunto, de detalhes e de montagem do silo são apresentados neste item, objetivando, além de mostrar a estrutura como um todo, esclarecer acerca das dimensões e posições relativas de seus componentes:

- página 220 - Elevação do silo;
- página 221 - Vista e corte, transversais, do silo;
- página 222 - Pilares do silo;
- página 223 - Tremonha do silo;
- página 224 - Detalhes do anel de enrijecimento do corpo do silo;
- página 225 - Detalhes das chapas de compensado do silo;
- página 226 - Detalhes da fixação das chapas de compensado do corpo do silo;
- página 227 - Detalhes da boca de saída do silo e da fixação dos pilares a fundação;
- página 228 - Cobertura do silo;
- página 229 - Lista de materiais (quadro 6.40)

Todos os desenhos, inicialmente na escala indicada, foram reduzidos em 35%, para possibilitar a anexação na folha com formato A4.
ELEVAÇÃO DO SILO

TELHA GRELHADA (6mm)

ANELA LATERAL PARA VISITAS

6º ANEL

5º ANEL

4º ANEL

3º ANEL

2º ANEL

1º ANEL

VISTA DE SUSTENÇÃO DA TRIBOCHA

Corte Parcial

A

B

ESC. 1:25
PILAR INFERIOR EXTERNO - 2 (6x)

PILARES DOS BEIRAIS 4x

PILARES DA CUMEIRA 2x

PILARES SUPERIORES INTERNOS

CORTES

DET. EMENDAS DOS PILARES INTERNOS COM OS PILARES EXTERNOS
PILAR EXTERNO

VISTA DE SUSTENTACAO DA TREMONHA
PASSA PANDANTE ø 1/2 x 12

CH. COMPENSADO DO CONO DO PILAR

CORTE MM

CH. COMPENSADO DA TREMONHA
REFORCO HORIZONTAL DA VISTA DE SUSTENTACAO
PILAR DO PILAR

DET. TREMONHA ESC.1:10

DIM. (cm)

CH. COMPENSADO 8,0 cm

- PASSA AUTO ATARRAXANTE ø 1/4 @ 5 cm
- ROIQOS ø 35 @ 5 cm
- FURAS PREV - 3 mm

CORTE JJ

ELEMENTO DE LIGACAO DAS CHAPAS DO COMPENSADO DA TREMONHA.

DIM. (cm)
ANEL DE ENRIQUECIMENTO

CORTE CC

CORTE FF

DET. LIGAÇÃO DO 7º e 8º ANEL

DET. LIGAÇÃO DO 9º e 10º

CORTE DD

CORTE EE

DET. LIGAÇÃO DO 4º AO 8º

DET. LIGAÇÃO DO 2º e 3º ANEL
CH. COMPENSADO DO CORPO DO SILO ESC. 1/10

CH. COMPENSADO DA TREMONTA
ESC. 1/10 - DIM (cm)
ESPAÇAMENTO DAS PARAFUSOS DE LISAÇÃO DAS CHAPAS DE COMPLEMENTO DO CORPO DO SILO

DIM.({cm})
ESCALA: 1:100
PROJEÇÃO DO TELHADO ESC. 1:25

DET. 1 - TERÇA DO BEIRAL

TERÇA DO BEIRAL
PILAR INTERNO
2 PARAF. 3/4" x 4"7
CH. COMPENSADO

DET. 2 - TERÇA DA CUMEIRA

TERÇA DA CUMEIRA
PILAR INTERNO
CH. COMPENSADO
S.R AUTO-ATARRAÇANTE
1/4 x 6
CANTONIERA 3/8 x 1/2" 3 1/8

LIGAÇÃO DAS TERÇAS DA COBERTURA AOS PÍLARES DO SILO ESC. 1:20

DET. SEÇÃO DA TERÇA ESC. 1:20

DIM (mm)
<table>
<thead>
<tr>
<th>MATERIAL/DESCRIÇÃO</th>
<th>DIMENSÕES</th>
<th>QTD.</th>
<th>UNIDADE</th>
<th>OBSERAÇÕES</th>
</tr>
</thead>
<tbody>
<tr>
<td>I- Aço Carbono</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- arreias lisas</td>
<td>1/4&quot;</td>
<td>872</td>
<td>unid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/8&quot;</td>
<td>16</td>
<td>unid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2&quot;</td>
<td>780</td>
<td>unid.</td>
<td></td>
</tr>
<tr>
<td>- arreias (telhas)</td>
<td>1/4&quot;</td>
<td>16</td>
<td>unid.</td>
<td></td>
</tr>
<tr>
<td>- cantoneiras</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5x6x1/4&quot;</td>
<td>35 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- chapas metálicas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2mm</td>
<td>0,7</td>
<td>m²</td>
<td>bocal de descarga</td>
</tr>
<tr>
<td></td>
<td>6mm</td>
<td>0,8</td>
<td>m²</td>
<td>fixação dos pilares</td>
</tr>
<tr>
<td>- parafusos auto-enterrantes</td>
<td>1/4&quot;x6&quot;</td>
<td>860</td>
<td>unid.</td>
<td></td>
</tr>
<tr>
<td>- parafusos passantes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/4&quot;x0,6</td>
<td>6</td>
<td>unid.</td>
<td>bocal de descarga</td>
</tr>
<tr>
<td></td>
<td>3/8&quot;x12</td>
<td>9</td>
<td>unid.</td>
<td>terças</td>
</tr>
<tr>
<td></td>
<td>1/2&quot;x5</td>
<td>48</td>
<td>unid.</td>
<td>ânxis enrij.</td>
</tr>
<tr>
<td></td>
<td>1/2&quot;x8</td>
<td>270</td>
<td>unid.</td>
<td>ânxis enrij.</td>
</tr>
<tr>
<td></td>
<td>1/2&quot;x19</td>
<td>12</td>
<td>unid.</td>
<td>fixação dos pilares</td>
</tr>
<tr>
<td></td>
<td>1/2&quot;x20</td>
<td>48</td>
<td>unid.</td>
<td>ligações dos pilares</td>
</tr>
<tr>
<td></td>
<td>1/2&quot;x22</td>
<td>12</td>
<td>unid.</td>
<td>viga sust. trem.</td>
</tr>
<tr>
<td>- dorcas</td>
<td>1/4&quot;</td>
<td>6</td>
<td>unid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/8&quot;</td>
<td>8</td>
<td>unid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2&quot;</td>
<td>399</td>
<td>unid.</td>
<td></td>
</tr>
<tr>
<td>- pregos</td>
<td>19x36</td>
<td>288</td>
<td>unid.</td>
<td>viga sust. trem.</td>
</tr>
<tr>
<td>II- Borracha</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- buchas (telhas)</td>
<td>1/4&quot;</td>
<td>16</td>
<td>unid.</td>
<td></td>
</tr>
<tr>
<td>III- Cimento Amianto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- cuveiras (15°)</td>
<td>110</td>
<td>16</td>
<td>unid.</td>
<td></td>
</tr>
<tr>
<td>- telhas conduladas (6mm)</td>
<td>110x135</td>
<td>6</td>
<td>unid.</td>
<td></td>
</tr>
<tr>
<td>IV- Madeira Compensada</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- chapas (18mm)</td>
<td>244x122</td>
<td>24</td>
<td>unid.</td>
<td></td>
</tr>
<tr>
<td>V- Madeira Makita</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- peroba rosa</td>
<td>3x12x180</td>
<td>12</td>
<td>unid.</td>
<td>ânxis de enrij.</td>
</tr>
<tr>
<td></td>
<td>3x16x135</td>
<td>6</td>
<td>unid.</td>
<td>viga de sust.</td>
</tr>
<tr>
<td></td>
<td>6x12x160</td>
<td>6</td>
<td>unid.</td>
<td>ânxis ligação</td>
</tr>
<tr>
<td></td>
<td>6x12x180</td>
<td>12</td>
<td>unid.</td>
<td>ânxis de enrij.</td>
</tr>
<tr>
<td></td>
<td>6x12x200</td>
<td>2</td>
<td>unid.</td>
<td>terças</td>
</tr>
<tr>
<td></td>
<td>6x12x300</td>
<td>2</td>
<td>unid.</td>
<td>terças</td>
</tr>
<tr>
<td></td>
<td>6x10x135</td>
<td>6</td>
<td>unid.</td>
<td>viga de sust.</td>
</tr>
<tr>
<td></td>
<td>6x16x135</td>
<td>62</td>
<td>unid.</td>
<td>ânxis/pilares ext.</td>
</tr>
<tr>
<td></td>
<td>6x16x180</td>
<td>6</td>
<td>unid.</td>
<td>pilares internos</td>
</tr>
<tr>
<td></td>
<td>6x16x225</td>
<td>9</td>
<td>unid.</td>
<td>pilares internos</td>
</tr>
</tbody>
</table>

* Dimensões não especificadas = cm
** Comprimento das peças da Peroba Rosa aconselhado de 1,0m

Quadro 6.40- Lista de materiais para construção do silo
7- CONSTRUÇÃO E EXPERIMENTAÇÃO DE UMA TREMONHA PIRAMIDAL DE MADEIRA COMPENSADA

7.1- Generalidades

Junto à idealização do silo de chapas compensadas e sua verificação teórica com vista aos aspectos de resistência e deslocamentos, consignou-se a necessidade da sua construção e experimentação. Pretendeu-se uma avaliação das dificuldades construtivas da estrutura de formato não convencional e de seu real comportamento, quando sob carregamentos, considerando-se todas as hipóteses, teorias e dados utilizados.

Para tornar isto viável, pensou-se em analisar somente a tremonha do silo, a parte mais complexa da estrutura, simulando-se as ações estáticas e dinâmicas, máximas, sobre suas paredes, devido aos movimentos de carga e descarga do material ensilado, através de cargas estáticas, controladas e aplicadas por um sistema hidráulico-mecânico.

Assim, o modelo, em escala natural, formado pela tremonha e pequena parte do corpo do silo, conforme mostra a figura 7.1, foi montado dentro do Laboratório de Madeiras e de Estruturas de Madeira - LaMEM, da Escola de Engenharia de São Carlos - USP, aportando toda sua infra-estrutura para realização de ensaios.

Fig. 7.1. Modelo da tremonha do silo
7.2- Construção do Modelo

Sua construção obedeceu os detalhes construtivos do projeto desenvolvido no capítulo 6, com pequenas alterações, citadas na sequência.

Foram utilizadas chapas de madeira compensada, peças de madeira maciça da espécie Peroba Rosa e parafusos auto-atarrazantes dos mesmos lotes, em estoque no LaMEM para estudos, usados nos ensaios de caracterização das chapas de compensado e ligações com parafusos auto-atarrazantes do capítulo 5.

A parte vertical do silo, em consequência da altura disponível para realização do ensaio, limitou-se a 53cm de chapa compensada (figura 7.2).

Fig. 7.2. Altura da parte vertical do modelo
enquanto os chanfros nas bordas das chapas foram feitos com auxílio de uma tupia moldureira.

As peças de Peroba Rosa foram aplainadas para facilitar a montagem e instrumentação do modelo, ficando com dimensões pouco inferiores às especificadas no projeto inicial (figura 7.3).

Fig. 7.3. Dimensões das peças de Peroba Rosa aplainadas do modelo

Estas pequenas alterações de dimensões não afetaram os cortes das chapas compensadas, nem os espaçamentos entre os parafusos nas ligações.

Uma das hipóteses na análise estrutural teórica, realizada no capítulo 6, foi que todas as cargas tangenciais às placas da tremonha se transferem diretamente à viga de sustentação; esta
transferência ocorre pela "ação de chapa" dos compensados, "funcionando" as peças de madeira maciça das arestas da pirâmide, simplesmente como elementos de ligação destas chapas.

Estas peças, entretanto, poderiam ser aproveitadas também como tirantes, aliviando as chapas compensadas e consequentemente a viga de sustentação da tremonha; este alívio é possível ao transferirem parte dos carregamentos tangenciais, diretamente aos pilares, desde que, ligadas a estes, de forma menos deformável que a ligação das chapas compensadas à viga de sustentação.

Para observar esta possibilidade, no modelo, solidarizou-se estas peças aos pilares, de forma bastante rígida (figura 7.4), ao mesmo tempo em que aumentando o espaçamento dos parafusos auto-atarraxantes de 5 para 14 cm, enfraqueceu-se a ligação entre as chapas compensadas e a viga de sustentação da tremonha.
7.3- Experimentação do Modelo

O modelo foi montado sobre a laje de reação do LaMEM, na qual prendeu-se uma estrutura metálica, reação do cilindro hidráulico de capacidade 450KN, utilizado para carregar o conjunto (figura 7.1).

Esta estrutura metálica e o cilindro hidráulico, juntamente com a unidade de ensaio VICKERS, a câmara de carga resistiva de capacidade 500KN e o indicador de deformações TRANSDUTEC, modelo T-832, possibilitaram a aplicação e o controle dos carregamentos, durante os ensaios.

Para determinar, experimentalmente, as deformações e deslocamentos no modelo, durante os ensaios, foram utilizados:
- 16 extensômetros elétricos de resistência, marca KYOWA, tipo K1-10-A4, fator de resistência 1,89% e comprimento de resistência 10mm, lidos por um indicador de deformações KYOWA, modelo SM-60B, acoplado a uma caixa comutadora balanceável para 24 canais, também da KYOWA, modelo SS-24R;
- 10 transdutores de deslocamentos da HEWLETT PACKARD (1968), modelo 24 DCDT-500, registrados automaticamente por um conjunto da Hewllet Packard, constituído por um sistema de aquisição de dados, modelo HP 3497-A e o micro computador, modelo HP 9825-T;
- 1 célula de carga resistiva de capacidade 50KN, lida através do mesmo indicador de deformações, TRANSDUTEC, ligado à câmula de carga do cilindro hidráulico;
- 5 relógios comparadores Mitutoyo, precisão de 0,01mm e curso de 10mm.

Na figura 7.5, numerou-se as peças do modelo, a fim de facilitar a identificação da instrumentação.

![Diagrama de numeração das peças do modelo](image-url)

**Fig. 7.5. Numeração das peças do modelo**
Os extensômetros elétricos, foram instalados nas chapas compensadas (2 e 5) e nos elementos de ligação das chapas (1 e 4), numerados e posicionados conforme a figura 7.6.

Fig. 7.6. Posição e numeração dos extensômetros instalados no modelo
Os extensômetros de número 1 a 8 foram instalados no centro das chapas compensadas 2 e 5, opostas no modelo, visando ao controle das deformações, devidas, tanto à "ação de placa" como à "ação de chapa". Os de número 1 a 4 foram dispostos na direção das fibras de face das chapas, enquanto os de número 5 a 8 na direção normal a estas fibras.

Para verificar as deformações das chapas compensadas, próximo às ligações parafusadas, foram instalados, na borda da chapa compensada 5, na direção normal às suas fibras de face, os extensômetros de número 9 a 12. Quanto aos de número 9 e 10 ficaram no alinhamento do parafuso e os de número 11 e 12 no meio do vão, entre dois parafusos consecutivos.

Devido às hipóteses feitas na análise estrutural do capítulo 6, os elementos de ligação das chapas compensadas da tremonha do silo, teoricamente, não devem estar sujeitos, nem a esforços de flexão, nem a esforços de tração axial.

Entretanto, no modelo, se a solidarização destas peças aos pilares, executadas conforme a figura 7.4, mostrar-se menos flexível que a ligação das chapas compensadas à viga de sustentação, apareceriam esforços de tração axial nestas peças, decorrentes de sua ação de tirante aos carregamentos tangenciais à superfície das chapas compensadas triangulares.

Os extensômetros de número 13 a 16 foram instalados nos elementos de ligação 1 e 4, opostos no modelo, paralelamente às fibras da madeira, com o objetivo de avaliar os esforços nestes elementos.

Os extensômetros instalados no interior do modelo foram protegidos por pequenas chapas metálicas, para evitar danos, devindo ao atrito com o material armazenado.

Os transdutores de deslocamentos foram instalados nas chapas de compensado (2 e 5), nos elementos de ligação das chapas de compensado (1 e 4) e na viga de sustentação (4), aos pares, um na direção horizontal e outro na direção vertical, conforme ilustra a figura 7.7.

Os deslocamentos na direção normal aos elementos, foram obtidos por um componente nesta direção, dos deslocamentos resultantes, obtidos a partir de seus componentes horizontais e verticais, registrados nos ensaios (figura 7.8).
Fig. 7.7. Transdutores de deslocamento no elemento de ligação das chapas de compensado do modelo

\[ \omega_R = (\omega_h^2 + \omega_v^2)^{1/2} \]

\[ \omega = \omega_R \cdot \cos \Theta' \]

\[ \Theta' = \left| \arctan \left( \frac{\omega_v}{\omega_h} \right) - 45^\circ \right| \]

\( \omega_h \rightarrow \) leitura do transdutor horizontal  
\( \omega_v \rightarrow \) leitura do transdutor vertical  
\( \omega_R \rightarrow \) deslocamento resultante  
\( \omega \rightarrow \) deslocamento normal ao elemento (flecha)

Fig. 7.8. Deslocamento normal aos elementos
A figura 7.9 mostra a numeração dos transdutores e suas posições relativas nos elementos do modelo.

Fig. 7.9. Posição dos transdutores instalados no modelo
A célula de carga de 50KN foi utilizada, para avaliar os esforços de tração, nos elementos de ligação das chapas compensadas triangulares do modelo, em consequência de suas solidarizações aos pilares (figura 7.4).

Instalou-se no elemento de ligação 4, conforme detalhe mostrado na figura 7.10.

**Fig. 7.10. Posição da célula de carga instalada no modelo**

Em consequência do modelo ser mais largo que a laje de reação do LaMÉM, foram utilizados dois perfis U(2032 x 57,2 x 5,6 mm), para dar apoio aos pilares, conforme mostra a figura 7.11.
Fig. 7.11. Apoios dos pilares do modelo

Os deslocamentos verticais destes perfis, nas posições dos pilares, foram registrados por quatro relógios comparadores. A cada carregamento, o valor médio destes deslocamentos foi descontado das leituras de todos os transdutores de deslocamentos, instalados na vertical.

O quinto relógio comparador foi utilizado para determinar o deslocamento vertical da boca de saída do silo, conforme ilustra a figura 7.12.

Fig. 7.12. Posição do relógio comparador na boca de saída do modelo
O modelo, inicialmente enchido com soja (13,5KN) ou areia (28,5KN), foi successivamente carregado e descarregado pelo sistema hidráulico mecânico, estando a ação concentrada do cilindro, distribuída na parte superior do modelo, por uma estrutura de transição (4,5KN), composta por chapas compensadas, vigas de madeira e vigas metálicas.

A figura 7.13, esquematiza a sequência dos ensaios, mostrando que a experimentação dividiu-se em três etapas, sendo as duas primeiras com o modelo cheio de soja e a última com o modelo cheio de areia.

---

Carregamento

---

Descarregamento

* Peso da soja = 13,5KN, mais peso da estrutura de distribuição da ação concentrada do cilindro = 4,5KN

** Peso da areia mais o peso da estrutura de distribuição e ação do cilindro

Fig. 7.13. Sequência dos ensaios do modelo da tremonha do silo
Nos ensaios com o modelo cheio de soja, primeira e segundo etapas da experimentação, o carregamento foi gradativo, sendo interrompido a cada 20KN, para permitir o registro das deformações e deslocamentos pelos extensômetros, transdutores de deslocamentos, célula de carga e relógios comparadores.

Atingindo o carregamento máximo em cada ensaio, a carga do cilindro era retirada, ficando o modelo com um carregamento residual de 19KN, devido à soja e à estrutura de transição para distribuição da carga do cilindro, oportunidade em que eram registradas as indicações residuais da instrumentação (resíduos de descarregamento).

Após o 80º e 110º ensaios, correspondentes ao final da 1ª e 2ª etapas da experimentação, ainda com o modelo cheio de soja e com a estrutura da distribuição do carregamento do cilindro, toda a instrumentação foi checada e zerada. Após o esvaziamento completo deste, foram registrados os valores residuais em relação à condição anterior (resíduos de esvaziamento).

O quadro 7.1 complementa a figura 7.13 e mostra os níveis de carregamento em que se interrompeu o carregamento em cada ensaio, para aquisição dos dados.

```
<table>
<thead>
<tr>
<th>CARGAS DE LEITURA NOS ENSAIOS DO MODELO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etapa</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Carregamento</td>
</tr>
</tbody>
</table>

1- carga devido ao enchimento com soja
2- carga devido ao enchimento com soja mais a estrutura de transição para distribuição da carga do cilindro

Quadro 7.1. Cargas de leitura da instrumentação, nos ensaios do modelo cheio de soja
Dentro de cada ensaio, as deformações e deslocamentos foram registrados de forma acumulativa. Entretanto, de um ensaio para outro, foram independentes, isto é, a cada novo ensaio, toda a instrumentação era checada e os registros feitos a partir de um novo zero.

Observa-se que, devido ao procedimento de não se esvaziar o modelo a cada final de ensaio, somente para os iniciais de cada etapa da experimentação, ou seja, 1º e 9º ensaios, as cargas e leituras começaram do zero, enquanto que, em todos os demais, as leituras partiram do zero e as cargas iniciaram do valor residual 19KN.

Na última etapa da experimentação, estando o modelo cheio com areia média, ao invés de soja, não foi utilizada a instrumentação, a não ser a de controle do carregamento aplicado pelo cilindro, em consequência do objetivo ser simplesmente, carregá-lo o máximo possível. O carregamento foi aplicado de forma contínua até atingir o limite de carga do equipamento do LaMEM.

Para determinar as cargas que simulam os efeitos de carregamento e descarregamento que ocorrem no silo real, no modelo foi feito o equilíbrio estático, segundo a figura 7.14.

O quadro 7.2 mostra estes valores, admitindo para a condição de carga do silo, as pressões segundo Janssen (ver item 2.2.1) e para a condição de descarga do silo as pressões médias da figura 6.45, obtidas a partir das especificações da norma alemã DIN 1055 (1986).

<table>
<thead>
<tr>
<th>Condição</th>
<th>Fórmula</th>
<th>( P_n ) KN/m²</th>
<th>( F_{cil} ) KN</th>
<th>( F_{aplic} ) KN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga</td>
<td>Janssen</td>
<td>27,37</td>
<td>( \sqrt{116,01} )</td>
<td>~135</td>
</tr>
<tr>
<td>Descarga</td>
<td>DIN 1055/86</td>
<td>( \sqrt{36,26} )</td>
<td>160,21</td>
<td>~179</td>
</tr>
</tbody>
</table>

1- valor dado na figura 6.45
2- \( F_{cil} = \frac{P_n \cdot A}{\lambda} \), \( P_n \) segundo Janssen + \( \lambda = (1 - \text{sen}^2 \phi) / (1 + \text{sen}^2 \phi) = 0,4 \) \( A = 3,74 \text{m}^2 \)

Quadro 7.2. Cargas estáticas no modelo, simulando as ações estáticas e dinâmicas, máximas, sobre as paredes da tremonha do silo

Comparando estes valores, aos da sequência dos ensaios (figura 7.13), vê-se que os três primeiros ensaios tiveram como carga máxima, aproximadamente, o valor estático de Janssen e que o
o 4º e 5º ensaios, tiveram como carga máxima o valor dinâmico da norma DIN 1055 (1986).

\[ F_{\text{aplic}} = \text{carga aplicada ao conjunto (KN)} \]
\[ F_{\text{cil}} = \text{carga no cilindro (KN)} \]
\[ F_w = \text{atrito da soja na parede vertical do modelo (KN)} \]
\[ G_{\text{est}} = \text{peso da estrutura de distribuição da carga (KN)} \]
\[ G_{\text{soja}} = \text{peso da soja, contida no modelo (KN)} \]
\[ p_n = \text{pressão normal às placas inclinadas do modelo (KN/m²)} \]
\[ D_w = \text{pressão de atrito às placas inclinadas do modelo (KN/m²)} \]

\[ F_w = 0,15 \mu \lambda \cdot \frac{F_{\text{cil}}}{R_h} \Rightarrow F_w = 0,05 F_{\text{cil}} \]
\[ F_{\text{aplic}} = F_{\text{cil}} + G_{\text{est}} + G_{\text{soja}} \quad F_{\text{aplic}} = F_{\text{cil}} + 19 \]
\[ F_{\text{aplic}} = 6 \cdot A_{\text{placa}} \cdot p_n \cdot (\cos \theta + \mu \sin \theta) + F_w + F_{\text{aplic}} = 4,72 p_n + 0,05 F_{\text{cil}} \]

Fig. 7.14. Equilíbrio estático das cargas no ensaio do modelo da tremonha do silo.
7.4- Resultados e Discussões

Conforme descrito no item 7.3, nas duas primeiras etapas da experimentação, para cada ensaio, foram obtidas as leituras correspondentes às variações nas deformações e deslocamentos do modelo, em função das cargas aplicadas. Obteve-se também, as deformações e deslocamentos residuais no modelo, após o ciclo de carga e descarga do ensaio (resíduos de descarregamento).

Como nos vários ensaios, com exceção aos iniciais de cada etapa da experimentação (1o e 9o ensaios), o ciclo de carga e descarga limitou-se a ação do cilindro hidráulico, portanto iniciou e terminou no mesmo nível de carregamento, (19KN), esperava-se fossem os respectivos resíduos de deformações e deslocamentos, pequenos e possíveis de serem desprezados.

Para o 1o e 9o ensaios, o ciclo de carregamento partiu do nível zero (modelo completamente vazio) e terminou no nível 19KN. Esperava-se resíduos de deformações e deslocamentos decorrentes da carga residual, de valores próximos às leituras registradas na sequência de carregamento do ciclo, para o nível de carga 19KN.

Os dados obtidos mostraram, contudo, o aparecimento de resíduos significativos ao final de cada ensaio. E ainda mais, nos ensaios iniciais de cada etapa, resíduos com valores superiores aos esperados, que não poderiam ser explicados simplesmente pela presença das cargas residuais, decorrentes do não esvaziamento do modelo.

Uma tentativa de interpretação destes resíduos medidos, parece ser no sentido de atribuí-los a duas causas principais: uma resultante do material utilizado na construção do modelo e das ligações decorrentes, que se manifesta como acomodação do conjunto em deslocamento de corpo rígido, e outra decorrente do material de enchimento, que ao acomodar-se aos novos níveis de compactação, impede a restauração das pressões iniciais do modelo.

A inviabilidade experimental de descarregar o modelo a cada final de ensaio, impossibilitou a quantificação de cada uma destas causas de resíduo, o que permitiria, na sequência da análise dos dados, desconsiderar aquelas decorrentes da acomodação do conjunto, em deslocamento do corpo rígido.

Optou-se por readaptar os dados obtidos pela condição mais desfavorável, considerando o valor total destes resíduos.
A cada ensaio foram acumulados os resíduos relativos aos ciclos de carregamentos precedentes.

Assim, foi possível, em cada etapa da experimentação uma análise das variações de deformações e deslocamentos no modelo, como se os ciclos de carga e descarga dos diversos ensaios tivessem ocorrido de forma contínua, com todos os valores relativos a um único zero.

A organização das sequências de valores obtidas nos ensaios, em forma de matrizes e a utilização do micro computador HP 9825T, facilitou grandemente a manipulação e análise dos mais de 4500 dados registrados.

Os resultados, já readaptados e organizados sob a forma de matrizes, tanto para as deformações, como para os deslocamentos do modelo, encontram-se nos quadros de número 1 a 6 do Anexo 4.

Apenas a título ilustrativo, as figuras de 7.15 a 7.20 apresentam gráficos típicos do comportamento das deformações e deslocamentos do modelo, para as duas primeiras etapas da experimentação.

Nos gráficos das deformações próximas às ligações para-fusadas, nas bordas das chapas compensadas, extensômetros 9, 10, 11 e 12, como já era esperado, observou-se pequenas perturbações nas leituras, ao longo dos ciclos de carga e descarga. Entretanto, pôde-se constatar que todos os gráficos apresentaram, aproximadamente, a mesma forma, permitindo observações como:

- os resíduos de deformações e deslocamentos foram máximos para os ensaios iniciais de cada etapa da experimentação, mostrando que no primeiro ciclo de carga e descarga em cada sequência de ensaios, as acomodações do conjunto e a compactação do material de enchimento foram significativas;

- nos demais ensaios de cada etapa da experimentação, os resíduos foram bastante inferiores, porém sempre dependentes do estado de acomodação do conjunto e compactação do material de enchimento. Na repetição de ensaios com o mesmo nível de carga máxima, os resíduos mostraram-se diminuindo a cada ciclo de carga e descarga aplicado. Ademais, ao aumentar o nível de carga voltavam a crescer (figura 7.21);

- na primeira etapa da experimentação, as funções carga x deformação e carga x deslocamento do modelo mostraram-se independentes das interrupções no carregamento e dos ciclos de carga e descarga. Ao acréscimo do nível de carregamento, mantinha-se a tendência da função, estabelecida no 10 ensaio (figura 7.22);
- as alterações introduzidas pelas interrupções dos carregamentos e aplicações de sucessivos ciclos de carga e descarga, limitaram-se às deformações e deslocamentos correspondentes a estes ciclos. Manifestaram-se na forma de um aumento de rigidez do conjunto, devido ao modelo já estar acomodado e o material de enchimento compactado para estes níveis de carga considerados;

- na segunda etapa da experimentação, as funções carga x deformação e carga x deslocamento seguiram o observado na primeira etapa. Embora se tenham realizado apenas três ensaios, constatou-se um aumento de rigidez do conjunto, em relação à primeira etapa da experimentação, em consequência do modelo já estar acomodado;

- os gráficos desta segunda etapa da experimentação mostraram ser o nível de carga em torno de 270KN, o final do comportamento linear das deformações e deslocamentos do modelo, em relação às cargas aplicadas;

- as leituras das deformações e deslocamentos, para um mesmo nível de carregamento, foram maiores para a primeira etapa da experimentação do que para a segunda. Isto é explicado, pelo acúmulo a cada ensaio, dos resíduos dos ensaios precedentes, sem descontar as paroclas, devidas aos deslocamentos do corpo rígido do conjunto, certamente maiores no início da experimentação;

- os resíduos de deformações e deslocamentos após o modelo completamente vazio, foram significativos, principalmente na 1ª etapa da experimentação.

As leituras indicadas pela célula de carga de 50KN, instalada no elemento de ligação 4, foram desprezadas em consequência do comportamento completamente aleatório, conforme ilustra o gráfico da figura 7.23.

A figura 7.24 mostra os deslocamentos verticais da boca de saída do modelo, para cada etapa da experimentação, em função das cargas aplicadas.

Na terceira etapa da experimentação, conforme já descrito no item 7.3, com o modelo cheio de areia média ao invés de soja, não foram registradas as variações nas deformações e deslocamentos em função da carga aplicada.

O ensaio limitou-se a aplicar a máxima carga possível ao modelo. Foi atingido o nível de carregamento, 500KN, onde as deformações e deslocamentos, tanto das chapas de compensado, como de suas ligações, mostraram-se bastante acentuadas, conforme ilustra a figura 7.25.
1ª Etapa da experimentação

2ª Etapa da Experimentação

Fig. 7.15. Deformações no centro das chapas de compensado - Extensômetro 4
1ª Etapa da experimentação

2ª Etapa da experimentação

Fig. 7.16. Deformações nas bordas das chapas de compensado - Extensômetro 9
1ª Etapa da experimentação

2ª Etapa da experimentação

Fig. 7.17. Deformações no elemento de ligação das chapas de compensado - Extensômetro 15
1ª Etapa da experimentação

2ª Etapa da experimentação

Fig. 7.18. Deslocamentos horizontais no centro da placa compensada - Transdutor I1H
1ª Etapa da experimentação

2ª Etapa da experimentação

Fig. 7.19. Deslocamentos horizontais do elemento de ligação das chapas de compensado - Transdutor I3H
1ª Etapa da experimentação

2ª Etapa da experimentação

**Fig. 7.20.** Deslocamentos verticais da viga de sustentação da tremonha do modelo - Transdutor 15V
Fig. 7.21. Comportamento dos resíduos nas sequências de ensaios.

Fig. 7.22. Função carga x deformação e carga x deslocamento do modelo.
1ª Etapa da experimentação

2ª Etapa da experimentação

Fig. 7.23. Gráfico das leituras indicadas pela célula de Carga de 50KN, utilizada na experimentação do modelo
1ª Etapa da experimentação

2ª Etapa da experimentação

Fig. 7.24. Deslocamentos verticais da boca de saída do modelo
* as chapas de compensado, perfeitamente ajustadas pela ocasião da montagem do modelo, afastaram-se mais de 1 cm.

Fig. 7.25. Ligação de duas chapas de compensado triangulares do modelo, deslocada graças à ação do carregamento máximo aplicado, 500KN.

Ainda que as chapas de compensado e suas ligações tenham sofrido estas deformações e deslocamentos acentuados, a estrutura do modelo manteve-se com sua forma original.

A viga de sustentação da tremonha continuou hexagonal e com deslocamentos dentro de valores razoáveis e os pilares, não se deslocaram de suas posições iniciais embora, propositadamente, apoiados de forma a poderem se deslocar horizontalmente.
8- COMPARAÇÃO DOS RESULTADOS EXPERIMENTAIS COM OS VALORES TEÓRICOS

O confronto entre os resultados obtidos a partir dos dados registrados na experimentação (Capítulo 7) e os teóricos, calculados para o modelo, conforme os procedimentos descritos no capítulo 6, efetuou-se para os níveis de carregamento 139, 179 e 239KN, níveis estes, dentro do intervalo de linearidade do modelo, em relação às cargas aplicadas.

Para facilitar a análise, os quadros 8.1 e 8.2, apresentam uma condensação dos dados experimentais, mostrados no Anexo 4. São afigurados os valores das deformações e deslocamentos do modelo, para os carregamentos considerados, tanto para a primeira, como para a segunda etapa da experimentação.

<table>
<thead>
<tr>
<th>Extensão</th>
<th>E-1</th>
<th>E-2</th>
<th>E-3</th>
<th>E-4</th>
<th>E-5</th>
<th>E-6</th>
<th>E-7</th>
<th>E-8</th>
<th>E-9</th>
<th>E-10</th>
<th>E-11</th>
<th>E-12</th>
<th>E-13</th>
<th>E-14</th>
<th>E-15</th>
<th>E-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>-542</td>
<td>-643</td>
<td>837</td>
<td>1038</td>
<td>-618</td>
<td>-607</td>
<td>1117</td>
<td>1173</td>
<td>238</td>
<td>390</td>
<td>248</td>
<td>270</td>
<td>-130</td>
<td>-227</td>
<td>-227</td>
<td>526</td>
</tr>
<tr>
<td>179</td>
<td>-658</td>
<td>-763</td>
<td>1040</td>
<td>1288</td>
<td>-715</td>
<td>-698</td>
<td>1323</td>
<td>1410</td>
<td>302</td>
<td>252</td>
<td>402</td>
<td>13</td>
<td>-633</td>
<td>-590</td>
<td>753</td>
<td>798</td>
</tr>
<tr>
<td>239</td>
<td>-818</td>
<td>-922</td>
<td>1427</td>
<td>1743</td>
<td>-812</td>
<td>-792</td>
<td>1675</td>
<td>1807</td>
<td>405</td>
<td>392</td>
<td>493</td>
<td>147</td>
<td>-673</td>
<td>-1006</td>
<td>1342</td>
<td>1422</td>
</tr>
</tbody>
</table>

Deformações Específicas (x10^-6)

1ª Etapa de Experimentação

<table>
<thead>
<tr>
<th>Extensão</th>
<th>E-1</th>
<th>E-2</th>
<th>E-3</th>
<th>E-4</th>
<th>E-5</th>
<th>E-6</th>
<th>E-7</th>
<th>E-8</th>
<th>E-9</th>
<th>E-10</th>
<th>E-11</th>
<th>E-12</th>
<th>E-13</th>
<th>E-14</th>
<th>E-15</th>
<th>E-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>-490</td>
<td>-625</td>
<td>635</td>
<td>715</td>
<td>-500</td>
<td>-350</td>
<td>965</td>
<td>805</td>
<td>285</td>
<td>10</td>
<td>335</td>
<td>-55</td>
<td>-165</td>
<td>-245</td>
<td>480</td>
<td>530</td>
</tr>
<tr>
<td>239</td>
<td>-615</td>
<td>-655</td>
<td>1015</td>
<td>1115</td>
<td>-735</td>
<td>-535</td>
<td>1525</td>
<td>1300</td>
<td>500</td>
<td>65</td>
<td>615</td>
<td>-60</td>
<td>-390</td>
<td>-600</td>
<td>895</td>
<td>1055</td>
</tr>
</tbody>
</table>

1- Média dos ensaios 1, 2 e 3; 2- Média dos Ensaios 4 e 5; 3- Média dos Ensaios 6, 7 e 8; 4- Valores do 9º ensaio.

Quadro 8.1. Resumo dos valores obtidos experimentalmente, para as deformações no modelo.
## Deslocamentos (mm)

<table>
<thead>
<tr>
<th>Trans.</th>
<th>11H</th>
<th>11V</th>
<th>12H</th>
<th>12V</th>
<th>13H</th>
<th>13V</th>
<th>14H</th>
<th>14V</th>
<th>15H</th>
<th>15V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1'139</td>
<td>5,502</td>
<td>5,772</td>
<td>4,337</td>
<td>6,714</td>
<td>3,164</td>
<td>3,267</td>
<td>-0,497</td>
<td>3,933</td>
<td>-1,107</td>
<td>2,583</td>
</tr>
<tr>
<td>1'179</td>
<td>7,157</td>
<td>7,625</td>
<td>5,268</td>
<td>8,918</td>
<td>4,248</td>
<td>4,648</td>
<td>-0,588</td>
<td>5,661</td>
<td>-1,384</td>
<td>3,333</td>
</tr>
<tr>
<td>1'239</td>
<td>10,099</td>
<td>16,492</td>
<td>7,461</td>
<td>12,240</td>
<td>6,189</td>
<td>6,598</td>
<td>0,764</td>
<td>7,909</td>
<td>-1,640</td>
<td>4,325</td>
</tr>
</tbody>
</table>

Quadro 8.2. Resumo dos valores obtidos experimentalmente, para os deslocamentos no modelo

### 8.1- Deformações nas Chapas de Compensado

Com os valores experimentais das deformações nas chapas de compensado, extensômetros de número 1 a 12, determinou-se os correspondentes estados planos de tensões nas faces internas e externas das chapas, decorrentes dos carregamentos aplicados.

Assim, as distribuições de tensões normais à seção transversal das chapas compensadas, foram determinadas, admitindo-se serem lineares e com valores máximos iguais aos obtidos para as faces.

Estas tensões normais foram separadas em tensões, devido à "ação de placa" e tensões devido à "ação de chapa", e confrontadas com os valores teóricos.

Para transformar as deformações em tensões, considerou-se as chapas de compensado como ortotropicas e elásticas, obedecendo à lei de Hooke, \( \varepsilon = [S] \cdot \sigma \) (explicitando as tensões, \( \sigma = [C] \cdot [\varepsilon] \)). Esta matriz dos coeficientes \([S]\) e sua inversa \([C]\) foram obtidas no item 5.1. do capítulo 5.

Desta forma, a relação constitutiva entre tensões e deformações, nas chapas compensadas, pode ser expressa por:
\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} =
\begin{bmatrix}
8730 & 402 & 0 \\
402 & 5520 & 0 \\
0 & 0 & 1050
\end{bmatrix}
\begin{bmatrix}
\varepsilon_x \\
\varepsilon_y \\
\gamma_{xy}
\end{bmatrix}
\] (MPa)

ou

\[
\begin{align*}
\sigma_x &= 8730 \varepsilon_x + 402 \varepsilon_y \\
\sigma_y &= 402 \varepsilon_x + 5520 \varepsilon_y \\
\tau_{xy} &= 1050 \gamma_{xy}
\end{align*}
\]

a- Deformações no centro das chapas compensadas

Para determinar as tensões experimentais no centro das chapas compensadas, valeu-se da média das deformações registradas para as chapas 2 e 5.

O quadro 8.3 apresenta estas deformações médias, as respectivas tensões normais e as parcelas destas tensões, correspondentes à "ação de placa" e à "ação de chapa".

As tensões teóricas, no centro das chapas compensadas do modelo, bem como todos os dados e indicações necessários às determinações estão nos quadros 8.4 e 8.5.

Nestes cálculos teóricos, não se considerou a ação do peso próprio do modelo. A instrumentação do conjunto ocorreu após sua montagem, logo os valores experimentais registrados não refletem a ação do peso próprio. Assim, as cargas normais e tangenciais às chapas compensadas, inclinadas do modelo, foram feitas iguais às ações do material ensilado, ou seja, \( Q_n = D_n \) e \( Q_t = D_w \).
<table>
<thead>
<tr>
<th>Corpo</th>
<th>Deformação Média (x10^-6)</th>
<th>Tensões Normais MPA</th>
<th>Tensões na direção X, Paralela às fibras de face</th>
<th>Tensões na direção Y, Normal às fibras de face</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e_x</td>
<td>e_y</td>
<td>e_x</td>
<td>e_y</td>
</tr>
<tr>
<td></td>
<td>Face Interna</td>
<td>Face Externa</td>
<td>Face Interna</td>
<td>Face Externa</td>
</tr>
<tr>
<td>1º Etapa da Experimentação</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>-593</td>
<td>-613</td>
<td>928</td>
<td>1145</td>
</tr>
<tr>
<td>179</td>
<td>-711</td>
<td>-707</td>
<td>1164</td>
<td>1367</td>
</tr>
<tr>
<td>239</td>
<td>-868</td>
<td>-802</td>
<td>1585</td>
<td>1741</td>
</tr>
<tr>
<td>2º Etapa da Experimentação</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>-418</td>
<td>-425</td>
<td>675</td>
<td>825</td>
</tr>
<tr>
<td>179</td>
<td>-513</td>
<td>-515</td>
<td>838</td>
<td>1185</td>
</tr>
<tr>
<td>239</td>
<td>-635</td>
<td>-635</td>
<td>1065</td>
<td>1418</td>
</tr>
</tbody>
</table>

1- Média das chapas 2 e 5; 2- Conforme a Lei de Hoek

Quadro 8.3. Tensões normais experimentais, no centro das chapas de compensadas do modelo.
### AÇÃO DE PLACA

<table>
<thead>
<tr>
<th>Carga (KN)</th>
<th>$^1q_n^{\text{KN/m}^2}$</th>
<th>$^2\mu_x^{\cdot 10^{-2}}$</th>
<th>$^2\mu_y^{\cdot 10^{-2}}$</th>
<th>$^3m_x^{\text{KN/m/m}}$</th>
<th>$^3m_y^{\text{KN/m/m}}$</th>
<th>$^3\sigma_{pf}^{\text{MPa}}$</th>
<th>$^3\sigma_{pf}^{\text{MPa}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>28,18</td>
<td>0,923</td>
<td>0,851</td>
<td>0,44</td>
<td>0,41</td>
<td>8.15</td>
<td>7.59</td>
</tr>
<tr>
<td>179</td>
<td>36,26</td>
<td>0,923</td>
<td>0,851</td>
<td>0,57</td>
<td>0,52</td>
<td>10.56</td>
<td>9.63</td>
</tr>
<tr>
<td>239</td>
<td>48,31</td>
<td>0,923</td>
<td>0,851</td>
<td>0,75</td>
<td>0,69</td>
<td>13.89</td>
<td>12.78</td>
</tr>
</tbody>
</table>

1- Conforme equilíbrio da figura 7.14, $\sigma_n=q_n$
2- Dados no Quadro 5 do Anexo $3+c=0,8$
3- Calculados como no Quadro 6.15

**Quadro 8.4. Tensões de flexão, teóricas, no centro das chapas de compensado do modelo**

### AÇÃO DE CHAPA

<table>
<thead>
<tr>
<th>Carga (KN)</th>
<th>$^1q_n^{\text{KN/m}^2}$</th>
<th>$^1q_t^{\text{KN/m}^2}$</th>
<th>$^2r_{an}^{\text{KN/m}}$</th>
<th>$^3r_{vt}^{\text{KN/m}}$</th>
<th>$^4n_x^X^{\text{KN/m}}$</th>
<th>$^5n_y^X^{\text{KN/m}}$</th>
<th>$^6\sigma_{pt}^{\text{MPa}}$</th>
<th>$^7\sigma_{pt}^{\text{MPa}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>28,18</td>
<td>7,05</td>
<td>4,36</td>
<td>4,58</td>
<td>10,05</td>
<td>10,68</td>
<td>0,56</td>
<td>0,59</td>
</tr>
<tr>
<td>179</td>
<td>36,26</td>
<td>9,07</td>
<td>5,61</td>
<td>5,90</td>
<td>12,93</td>
<td>13,74</td>
<td>0,72</td>
<td>0,76</td>
</tr>
<tr>
<td>239</td>
<td>48,31</td>
<td>12,08</td>
<td>7,47</td>
<td>7,85</td>
<td>17,22</td>
<td>18,30</td>
<td>0,96</td>
<td>1,02</td>
</tr>
</tbody>
</table>

1- Conforme equilíbrio da figura 7.14, $\sigma_{n}=q_{n}$ e $\sigma_{w}=\mu \cdot \sigma_{n}=q_{t}$
2- Calculado conforme o quadro 6.16
3- Calculado conforme o quadro 6.17
4- Esforço de tração no centro da chapa triangular, conforme figura 6.57 + $n_{p}^{X} = 2(2r_{an} l_{x}/l_{y} + r_{vt})/3$
5- Conforme quadro 6.18 + $n_{p}^{Y} = 2,45 \cdot r_{an}$

**Quadro 8.5. Tensões de tração, teóricas, no centro das chapas de compensado do modelo**
A comparação entre estes valores de tensões experimentais e teóricos, foi feita mediante os gráficos expostos nas figuras 8.1 e 8.2.

Valores teóricos (Quadro 8.4)
- Valores da 1ª etapa da experimentação (Quadro 8.3)
- Valores da 2ª etapa da experimentação (Quadro 8.3)

Fig. 8.1. Comparação dos valores experimentais e teóricos das tensões de flexão no centro das chapas compensadas do modelo

Os resultados revelam que, tanto na primeira, como na segunda etapa da experimentação, as tensões de flexão, medidas no centro das chapas compensadas, são inferiores às obtidas teoricamente.

Deve-se este fato, sobretudo, às simplificações feitas no cálculo teórico. Dentre elas, pode-se citar, a consideração dos apoios das chapas triangulares do modelo, como elementos rígidos.

No ensaio, a viga de sustentação da tremonha e os elementos de ligação das chapas compensadas, ao se deformarem, provocaram uma redistribuição das tensões nestas chapas, certamente diminuindo seus valores máximos.
Valores teóricos (Quadro 8.5)
- Valores da 1ª etapa da experimentação (Quadro 8.3)
- Valores da 2ª etapa da experimentação (Quadro 8.3)

Fig. 8.2. Comparação dos valores experimentais e teóricos das tensões de tração, no centro das chapas compensadas do modelo

Verifica-se que as tensões de tração, nas duas etapas da experimentação, foram superiores às obtidas teoricamente.

Da mesma forma que nas tensões de flexão, as simplificações realizadas no cálculo teórico, estão no sentido de justificar estes resultados.

As tensões de tração, decorrentes da "ação da chapa" dos compensados, tanto na direção de suas fibras, como na direção normal, teoricamente, foram admitidas, uniformemente distribuídas. Sucedendo que, na realidade, devem distribuir-se, segundo uma função com valores máximos, no centro da chapa, era de se esperar valores calculados menores que os obtidos experimentalmente.

b- Deformações na borda das chapas compensadas

Objetivando simplesmente verificar, experimentalmente, o
comportamento da tração normal às fibras de face dos compensados, junto às ligações parafusadas de suas arestas, optou-se por registrar as deformações somente nesta direção, desprezando-se a contribuição da outra direção nos valores destas tensões. Procedimento, que não introduziu grandes erros na análise, em consequência do coeficiente de Poisson para o compensado, ser muito pequeno.

Os quadros 8.6 e 8.7, registram os valores das tensões normais, calculadas a partir das deformações dos extensômetros 9, 10, 11 e 12, dadas no quadro 8.1, bem como as parcelas destas tensões, correspondentes à flexão e à tração.

<table>
<thead>
<tr>
<th>TENÇÕES NA BORDA DA CHAPA COMPENSADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensômetros 9 e 10 - Alinhados com o Parafuso</td>
</tr>
<tr>
<td>Carga KN</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>139</td>
</tr>
<tr>
<td>179</td>
</tr>
<tr>
<td>239</td>
</tr>
<tr>
<td>22 Etapa da Experimentação</td>
</tr>
<tr>
<td>139</td>
</tr>
<tr>
<td>179</td>
</tr>
<tr>
<td>239</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23 Etapa da Experimentação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>285</td>
<td>10</td>
<td>1,57</td>
<td>0,06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>365</td>
<td>35</td>
<td>2,61</td>
<td>0,19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>508</td>
<td>65</td>
<td>2,76</td>
<td>0,36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - Extensômetro 9 | 2 - Extensômetro 10 | 3 - Lei de Hooke

Quadro 8.6. Tensões normais experimentais, na borda das chapas compensadas, na seção central, alinhada com o parafuso auto-atarraxante.
### Tensões na Bor da Chapas Compensadas

<table>
<thead>
<tr>
<th>Carga KH</th>
<th>Deformações (10^-6)</th>
<th>Tensões Normais</th>
<th>Distribuição Linear das Tensões</th>
<th>Parcela de Flexão</th>
<th>Parcela de Tração</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Face Interna</td>
<td>Face Externa</td>
<td>Face Interna</td>
<td>Face Externa</td>
<td>$\sigma_y$ MPA</td>
</tr>
<tr>
<td>139</td>
<td>-30</td>
<td>1,92</td>
<td>-0,17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>11</td>
<td>2,22</td>
<td>0,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>147</td>
<td>2,72</td>
<td>0,81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>-55</td>
<td>1,85</td>
<td>-0,30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>-50</td>
<td>2,40</td>
<td>-0,28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>-60</td>
<td>3,39</td>
<td>-0,33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1- Extensômetro 11  
2- Extensômetro 12  
3- Lei de Hooke

**Quadro 8.7. Tensões normais experimentais, na borda das chapas compensadas, na seção central, entre dois parafusos auto-ataraxantes consecutivos**

Observa-se a existência de tensões de flexão localizadas nas bordas das chapas compensadas, com valores mais significativos, embora ainda pequenos, na posição entre parafusos do que na alinhada com estes.

Os valores teóricos da tração normal às fibras de face da chapa compensada do modelo são dados no quadro 8.5. A comparação entre estes e os experimentais, obtidos nos quadros 8.6 e 8.7, foi feita através de gráficos, mostrados na figura 8.3.
a) Posição alinhada com os para-fusos • Extensômetros 9 e 10 ▲ Extensômetros 11 e 12

Valores teóricos (Quadro 9.51)

• Valores da 1ª etapa da experimentação (Quadros 8.6 e 8.7)
▲ Valores da 2ª etapa da experimentação (Quadros 8.6 e 8.7)

Fig. 8.3. Comparação dos valores experimentais e teóricos das tensões de tração das chapas compensadas do modelo

Observa-se que a tração, nas duas etapas da experimentação, foi superior à obtida teoricamente.

A exemplo do ocorrido no centro da chapa, também na borda, a consideração das tensões uniformemente distribuídas explica estes resultados. O ponto analisado corresponde a valores máximos da distribuição real, enquanto que, teoricamente, foram calculados valores médios.

8.2- Deformações nos Elementos de Ligação das Chapas Compensadas do Modelo

Com os valores experimentais das deformações nos elementos de ligação das chapas compensadas do modelo, extensômetros 13, 14, 15 e 16, determinou-se a distribuição de tensões normais axiais nestas peças, decorrentes dos carregamentos aplicados.

Foi desconsiderada a influência dos carregamentos transversais a estes elementos, resultantes da ação de chapa dos compensados. Procedimento, que não introduziu grandes erros na análise, em consequência do coeficiente de Poisson na madeira ser pequeno e também, serem estes carregamentos transversais desprezíveis, se
comparados aos admissíveis na peça.

As tensões normais foram separadas em tensões devido à flexão e tensões devida à tração, propiciando os momentos fletores e esforços de tração atuantes, nos níveis de carregamentos considerados. Estes valores levaram a algumas considerações acerca da função destas peças, no esquema estrutural do silo.

O quadro 8.8 apresenta os valores das tensões normais, suas parcelas de flexão e tração e os correspondentes momentos fletores e esforços de tração. Estes valores foram baseados na média das deformações nos elementos 1 e 4.

<table>
<thead>
<tr>
<th>Carga (N)</th>
<th>Deformações (10^6)</th>
<th>Tensões Normais Axiais (MPa)</th>
<th>Distribuição Linear das tensões Normais MPa</th>
<th>Parcela de flexão N</th>
<th>Parcela de tração N</th>
<th>Momento Flexor N.m</th>
<th>Tração Axial N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$e_x$</td>
<td>$e_y$</td>
<td>$e_{elem}$</td>
<td>$N_{ax}$</td>
<td>$N_{elem, f}$</td>
<td>$N_{elem, t}$</td>
<td>$T_{elem}$</td>
</tr>
<tr>
<td>10a Etapa da Experimentação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>-342</td>
<td>517</td>
<td>-3,23</td>
<td>4,88</td>
<td>-3,22</td>
<td>-3,20</td>
<td>0,12</td>
</tr>
<tr>
<td>179</td>
<td>-512</td>
<td>716</td>
<td>-4,63</td>
<td>7,32</td>
<td>-4,62</td>
<td>-4,60</td>
<td>0,17</td>
</tr>
<tr>
<td>219</td>
<td>-637</td>
<td>1332</td>
<td>-7,89</td>
<td>12,56</td>
<td>-7,89</td>
<td>-7,88</td>
<td>0,29</td>
</tr>
<tr>
<td>20b Etapa da Experimentação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>-200</td>
<td>490</td>
<td>-1,89</td>
<td>4,62</td>
<td>-1,89</td>
<td>-1,89</td>
<td>0,09</td>
</tr>
<tr>
<td>179</td>
<td>-320</td>
<td>685</td>
<td>-3,02</td>
<td>6,46</td>
<td>-3,02</td>
<td>-3,00</td>
<td>0,13</td>
</tr>
<tr>
<td>203</td>
<td>-495</td>
<td>975</td>
<td>-4,67</td>
<td>9,19</td>
<td>-4,67</td>
<td>-4,66</td>
<td>0,20</td>
</tr>
</tbody>
</table>

1º Média dos extensômetros 13 e 14  
2º $e_{elem} = E_{eq} e_x = 4950$N/Pa  
3º $N_{elem} = e_{elem} \cdot f \cdot 1$N  
4º $f_{elem} = 45,65 \cdot 10^{-6} \cdot f^2$

Quadro 8.8. Solicitação aos elementos de ligação das chapas compensadas do modelo.
Pela análise estrutural realizada no capítulo 6, teoricamente, os elementos de ligação dos compensados da tremonha não devem estar sujeitos à esforços de flexão. As cargas transferidas a eles pelos compensados, são equilibradas pela "ação de chapa" desses compensados. Ao invés de flexão, estes elementos ficam submetidos à tração transversal.

Os resultados experimentais confirmam esta suposição, por quanto, os valores dos momentos fletores obtidos, são insignificantes, perto dos que se desenvolveriam nos elementos, se estes tivessem que "funcionar" como vigas para dar apoio aos compensados.

Apenas para ilustrar, no quadro 8.9 são apresentados os momentos fletores que atuariam nos elementos de ligação, se estes funcionassem como vigas, para apoiarem os compensados da tremonha.

\[
\begin{align*}
q_{\text{elem}} &= 2 \cdot R_{\text{an}} \cdot \cos \gamma \backsimeq 41^\circ \\
R_{\text{an}} &= \text{Valores de reação nas anãs} \\
q_{\text{elem}} &= \text{Carga unitária nos elementos de ligação} \\
\text{Viga de sustentação da tremonha}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Carga</th>
<th>1( R_{\text{an}} )</th>
<th>2( q_{\text{elem}} )</th>
<th>2( M_{\text{elem}} )</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>4,36</td>
<td>6,53</td>
<td>1,38</td>
<td>mais de dez vezes o valores medidos (Quadro 8.7)</td>
</tr>
<tr>
<td>179</td>
<td>5,61</td>
<td>8,40</td>
<td>1,77</td>
<td>idem</td>
</tr>
<tr>
<td>239</td>
<td>7,47</td>
<td>11,19</td>
<td>2,36</td>
<td>idem</td>
</tr>
</tbody>
</table>

1- Dado no quadro 8.5  
2- \( M_{\text{elem}} = q_{\text{elem}} \cdot l_{\text{elem}}^2 / 8 \)

Quadro 8.9. Momento fletor nos elementos de ligação dos compensados da tremonha, se estes funcionassem como vigas, para dar apoio a estes compensados.
Pelos valores de tração, obtidos no quadro 8.8, pode-se afirmar que os elementos de ligação dos compensados da tremonha não estão sujeitos à tração axial.

A tentativa de solidarizá-los aos pilares, proposta no item 7.2, não deu resultado. A ligação apresentada na figura 7.4, mostrou-se menos rígida que a ligação parafusada entre as chapas compensadas e a viga de sustentação da tremonha; mesmo com esta enfraquecida pelo aumento do espaçamento dos parafusos.

Como na prática, devido aos aspectos construtivos, dificilmente se conseguirá uma ligação mais eficiente, os elementos de ligação dos compensados da tremonha não poderão ser aproveitados como tirantes.

Estes valores baixos, registrados para a tração nestes elementos, justificam as leituras aleatórias propriiciadas pela célula de carga de 50KN, instalada em sua ligação com os pilares do modelo (figura 7.10). A célula de carga registrou esforços localizados na complexa ligação, ao invés da tração desejada.

9.3- Deslocamentos nas Chapas Compensadas

Os deslocamentos do ponto central das chapas de compensado, na direção normal à sua superfície (flechas), foram obtidos a partir da média dos deslocamentos horizontais e da média dos deslocamentos verticais, registrados experimentalmente neste ponto, para as chapas 2 e 5, transdutores I1H, I1V, I2H e I2V, procedendo-se como ilustra a figura 7.8.

O quadro 8.10 apresenta estes deslocamentos experimentais médios e os deslocamentos na direção normal às chapas compensadas, bem como todos os elementos necessários às determinações.

Os deslocamentos teóricos dos pontos centrais das chapas de compensado, na direção normal à sua superfície, calculadas conforme o quadro 5 do Anexo 3, estão no quadro 8.11.
### FLECHAS EXPERIMENTAIS

<table>
<thead>
<tr>
<th>Carga</th>
<th>(1\omega_h)</th>
<th>(2\omega_v)</th>
<th>(3\varphi)</th>
<th>(4\omega_R)</th>
<th>(5\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>1ª Etapa da Experimentação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>4,880</td>
<td>6,243</td>
<td>6,99(^o)</td>
<td>7,92</td>
<td>7,86</td>
</tr>
<tr>
<td>179</td>
<td>6,210</td>
<td>8,272</td>
<td>8,10(^o)</td>
<td>10,34</td>
<td>10,24</td>
</tr>
<tr>
<td>239</td>
<td>8,760</td>
<td>11,346</td>
<td>7,33(^o)</td>
<td>14,33</td>
<td>14,21</td>
</tr>
<tr>
<td>2ª Etapa da Experimentação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>3,201</td>
<td>4,399</td>
<td>8,96(^o)</td>
<td>5,44</td>
<td>5,37</td>
</tr>
<tr>
<td>179</td>
<td>4,118</td>
<td>5,521</td>
<td>8,28(^o)</td>
<td>6,89</td>
<td>6,82</td>
</tr>
<tr>
<td>239</td>
<td>5,380</td>
<td>7,112</td>
<td>7,89(^o)</td>
<td>8,92</td>
<td>8,84</td>
</tr>
</tbody>
</table>

1º - Média dos transdutores I1H e I2H - (Quadro 8.2)
2º - Média dos transdutores I1V e I2V - (Quadro 8.2)
3º - \(\varphi = \left| \arctan \left( \frac{\omega_v}{\omega_h} \right) \right| - 45^o\) - (Fig. 7.8)
4º - \(\omega_R = \left( \omega_h^2 + \omega_v^2 \right)^{1/2}\) - (Fig. 7.8)
5º - \(\omega = \omega_R \cdot \cos \varphi\) - (Fig. 7.8)

Quadro 8.10. Flechas experimentais no centro das chapas compensadas do modelo

### FLECHAS TEÓRICAS

<table>
<thead>
<tr>
<th>Carga</th>
<th>(1q_n)</th>
<th>(2\delta)</th>
<th>(l_x)</th>
<th>(3\omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KN</td>
<td>KN/m²</td>
<td>.10⁻⁷</td>
<td>m</td>
<td>mm</td>
</tr>
<tr>
<td>139</td>
<td>28,18</td>
<td>0,618</td>
<td>1,30</td>
<td>4,97</td>
</tr>
<tr>
<td>179</td>
<td>36,26</td>
<td>0,618</td>
<td>1,30</td>
<td>6,40</td>
</tr>
<tr>
<td>239</td>
<td>48,31</td>
<td>0,618</td>
<td>1,30</td>
<td>8,53</td>
</tr>
</tbody>
</table>

1º - Dado no quadro 8.5
2º - Quadro 5 Anexo 3
3º - \(\omega = 10^6 \cdot \delta \cdot q_n \cdot l_x^{1/4}\)

Quadro 8.11. Flechas teóricas no centro das chapas compensadas do modelo
As comparações entre as flechas experimentais e as teóricas foram feitas através do gráfico exposto na figura 8.4.

Valores teóricos (Quadro 8.11)
- Valores da 1ª etapa da experimentação (Quadro 8.10)
- Valores da 2ª etapa da experimentação (Quadro 8.10)

Fig. 8.4. Comparação das flechas experimentais e teóricas das chapas compensadas do modelo

Os valores experimentais mostraram-se superiores aos teóricos, o que é coerente, porquanto, os deslocamentos experimentais refletem os deslocamentos de corpo rígido, devido à acomodação do conjunto, e à flexibilidade dos elementos de apoio dos compensados, teoricamente, considerados rígidos.

Observa-se que na segunda etapa da experimentação, com o modelo já acomodado, os valores teóricos e experimentais se aproximaram bastante.

8.4- Deslocamentos nos Elementos de Ligação das Chapas Compensadas do Modelo

Os deslocamentos transversais dos elementos de ligação das chapas compensadas (flechas), em seu ponto terço-médio superior, foram obtidos a partir da média dos deslocamentos horizontais e da média dos deslocamentos verticais, registrados experimentalmente.
neste ponto, para os elementos 1 e 4, transdutores I3H, I3V, I4H e I4V, procedendo-se como mostra a figura 7.8.

O quadro 8.12, apresenta as flechas experimentais destes elementos, que foram, teoricamente considerados apoios rígidos das chapas compensadas do modelo, portanto, indeslocáveis.

<table>
<thead>
<tr>
<th>FLECHAS EXPERIMENTAIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carga KN</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1° Etapa da Experimentação</td>
</tr>
<tr>
<td>139</td>
</tr>
<tr>
<td>179</td>
</tr>
<tr>
<td>239</td>
</tr>
<tr>
<td>2° Etapa da Experimentação</td>
</tr>
<tr>
<td>139</td>
</tr>
<tr>
<td>179</td>
</tr>
<tr>
<td>239</td>
</tr>
</tbody>
</table>

1- Média dos transdutores I3H e I4H – (Quadro 8.2)
2- Média dos transdutores I3V e I4V – (Quadro 8.2)
3- $\Theta^* = \arctg (\omega_h / \omega_R) - 45^0$ – (Fig. 7.8)
4- $\omega_R = (\omega_h^2 + \omega_V^2)^{1/2}$ – (Fig. 7.8)
5- $\omega = \omega_R \cdot \cos \Theta^*$ – (Fig. 7.8)

Quadro 8.12. Flechas experimentais no terço-médio superior dos elementos de ligação dos compensa
dos do modelo
O gráfico da figura 8.5 ilustra o comportamento destes deslocamentos transversais dos elementos de ligação dos compensados, em função dos carregamentos considerados.

- Valores da 1ª etapa da experimentação (Quadro 8.12)
- Valores da 2ª etapa da experimentação (Quadro 8.12)
* Considerando \( l_{\text{elem}} = 1,30 \text{m} \)

Fig. 8.5. Comportamento das flechas experimentais dos elementos de ligação dos compensados no modelo

8.5- Deslocamentos na Viga de Sustentação da Tremonha do Modelo

Os deslocamentos experimentais do ponto médio da viga de sustentação da tremonha do modelo, nos planos horizontal e vertical, foram obtidos diretamente dos transdutores 15H e 15V, e estão no quadro 8.13.
<table>
<thead>
<tr>
<th>Carga KN</th>
<th>$\omega_h$ mm</th>
<th>$\omega_v$ mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>-1,11</td>
<td>2,58</td>
</tr>
<tr>
<td>179</td>
<td>-1,36</td>
<td>3,33</td>
</tr>
<tr>
<td>239</td>
<td>-1,64</td>
<td>4,33</td>
</tr>
<tr>
<td>139</td>
<td>-0,47</td>
<td>2,06</td>
</tr>
<tr>
<td>179</td>
<td>-0,55</td>
<td>2,47</td>
</tr>
<tr>
<td>239</td>
<td>-0,54</td>
<td>3,09</td>
</tr>
</tbody>
</table>

1° Etapa da Experimentação

2° Etapa da Experimentação

1° Transdutor I5H
2° Transdutor I5V

Quadro 8.13. Flechas experimentais na viga de sustentação da tremonha do modelo

Os valores teóricos destes deslocamentos foram calculados, conforme indica o quadro 6.29, sendo os carregamentos vertical e horizontal, uniformemente distribuídos sobre a viga, obtidos conforme a figura 8.6, e o carregamento axial, como indicado na figura 6.34.

$* Sustentação \cdot q_{sust} = (F_{aplic} - F_w)/U_v$

$** Reação horizontal \cdot r_{Ah} = 0,15 \cdot \lambda \cdot F_{cil}/R_{H} \cdot U_v$

(Fig. 7.14) $F_w = 0,05 \cdot F_{cil}$

$F_{aplic} = F_{cil} + 19$

Fig. 8.6. Carregamentos horizontal e vertical, uniformemente distribuídos sobre a viga de sustentação da tremonha do modelo
O quadro 8.14 apresenta os valores destes carregamentos, bem como, dos deslocamentos, além dos dados necessários às determinações.

VIGA DO MODELO

VIGA TEÓRICA

\[ I_x = 1135 \times 10^{-8} \text{ m}^4 \]
\[ I_y = 1020 \times 10^{-8} \text{ m}^4 \]

**FLECHAS TEÓRICAS**

<table>
<thead>
<tr>
<th>Carga</th>
<th>Carregamentos sobe a viga</th>
<th>Flecha Horizontal</th>
<th>Flecha Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( q_h )</td>
<td>( q_V )</td>
<td>( N_v )</td>
</tr>
<tr>
<td>KN</td>
<td>KN/m</td>
<td>KN/m</td>
<td>KN</td>
</tr>
<tr>
<td>139</td>
<td>14,56</td>
<td>19,11</td>
<td>14,69</td>
</tr>
<tr>
<td>179</td>
<td>18,87</td>
<td>24,57</td>
<td>19,04</td>
</tr>
<tr>
<td>239</td>
<td>25,34</td>
<td>32,76</td>
<td>25,57</td>
</tr>
</tbody>
</table>

1. Conforme figura 8.6
2. Conforme figura 6.34: \( N_v = -0,87 q_V \cdot h \)
3. Viga engastada + quadro 6.29 + ensaio rápido + \( E'_w = E_w = 9430\text{MPa} \)
4. Viga simplesmente apoiada + quadro 6.29 + ensaio rápido + \( E'_w = E_w = 9430\text{MPa} \)

Quadro 8.14. Flechas teóricas na viga de sustentação da tremonha do modelo

A comparação entre as flechas experimentais e teóricas da viga de sustentação da tremonha do modelo foi feita através do gráfico mostrado na figura 8.7.
a) flechas horizontais  

b) flechas verticais

- Valores teóricos (Quadro 8.14)
- Valores da 1ª etapa da experimentação (Quadro 8.13)
- Valores da 2ª etapa da experimentação (Quadro 8.13)

Fig. 8.7. Comparação das flechas experimentais e teóricas da viga de sustentação da tremonha do modelo

Observa-se que na direção vertical, as flechas experimentais foram menores que as teóricas, tanto na primeira como na segunda etapa da experimentação. Estes resultados são justificados, pela presença das chapas compensadas do corpo do silo, solidarizadas as vigas, diminuindo seus deslocamentos neste plano vertical. Na direção horizontal, coerentemente, as flechas experimentais foram maiores que as teóricas, com o modelo não acomodado e menores e com este já acomodado.
9- COMENTÁRIOS FINAIS E CONCLUSÕES

Ao final desta pesquisa sobre silos verticais aéreos para fazendas com seção transversal hexagonal, construídos com chapas de madeira compensada e peças de madeira maciça da espécie Peroba Rosa, interligadas através de parafusos auto-atarraxantes, é importante proceder a um balanço geral, bem como, tecer comentários e sugestões que possibilitem o prosseguimento dos estudos.

O objetivo fundamental do trabalho foi verificar a viabilidade técnica e construtiva destes silos, mediante o desenvolvimento do projeto teórico de uma de suas formas mais completas, o silo dotado de fundo tremoñhado e a construção e experimentação de um modelo em escala natural desta tremoñha.

A falta de informações e recomendações, entretanto, sobre as cargas atuantes nestas estruturas, como também, o desconhecimento das características dos materiais e ligações a serem utilizadas, determinaram a necessidade de estudos paralelos.

Embora as discussões e conclusões pertinentes aos estudos realizados já se encontrem neste texto ao final de cada capítulo, na sequência são resumidas e apresentadas em seus aspectos principais, de modo a contribuírem para as conclusões finais do trabalho e abrirem perspectivas a novas pesquisas.

I- Sobre os carregamentos nos silos:

a- Existe uma grande disparidade entre as diversas teorias e resultados experimentais sobre as pressões que os materiais ensilados desenvolvem sobre as paredes dos silos;

b- As normas internacionais existentes sobre o assunto refletem esta situação, diferindo significativamente uma das outras, não cobrindo todas as áreas de informações necessárias ao projeto destas estruturas;

c- A norma alemã DIN 1055 (1986) é a única que tem se atualizado, ao longo dos últimos anos, representada, hoje, o texto mais abrangente sobre o assunto, abordando desde as características do material armazenado, até o tipo de fluxo que se desenvolve, dentro das células, com suas respectivas distribuições de pres
sões. Suas especificações são válidas para qualquer tipo de material de construção das paredes do silo;

d- Sobre a determinação da ação do vento em estruturas verticais de seção poligonal, mais especificamente hexagonal, poucas informações foram encontradas, além das de Pris (Apud BLESSMANN, 1983) evidenciando a necessidade de estudos, no sentido de determinar os coeficientes de pressões e arrasto nestas estruturas.

II- Sobre as chapas de madeira compensada e a determinação de suas características elásticas e de resistência

a- As chapas de madeira compensada podem ser consideradas, para análise estrutural, como um material plano ortotrópico, ou seja, com simetria elástica, em relação a dois planos perpendiculares;

b- As características elásticas e de resistência dos compensados estruturais podem ser obtidas, ou a partir das propriedades das lâminas de madeira que os constituem, ou através de ensaios em corpos de prova, seguindo metodologia adequada à teoria específica deste material ortotrópico;

c- Para compensados, onde o controle do tipo e propriedades das espécies de madeira utilizadas em sua fabricação é deficiente, tais como os fabricados no Brasil, as características elásticas e de resistência devem ser obtidas experimentalmente, como se estes tivessem seção transversal homogênea (características efetivas);

d- O estudo de RIBEIRO (1986), acerca da determinação de propriedades elásticas e de resistência dos compensados estruturais, apresenta-se, até então, como a única proposta metodológica no Brasil, para estas determinações;

e- Os valores das propriedades elásticas e de resistência da chapa de madeira compensada estudada (Madeirit-form-18mm), obtidas experimentalmente, segundo a metodologia proposta por RIBEIRO (1986), mostraram-se próximos aos estabelecidos pelo próprio RIBEIRO (1986), para chapas de compensado de Pinho do Paraná
(15 mm) e bastante coerentes com os valores da literatura internacional;

f- Os valores médios do módulo de elasticidade longitudinal do compensado, obtidos em ensaios de tração, compressão e flexão mostraram-se estatisticamente equivalentes, possibilando a adoção de um valor médio geral, para esta característica, em cada direção da chapa ortotrópica;

g- A relação entre os valores médios do módulo de elasticidade longitudinal do compensado, na direção perpendicular e na direção paralela às suas fibras de face, respectivamente, mostrou-se em torno de 65%;

h- O módulo de elasticidade transversal do compensado, determinado em ensaios de torção em placas quadradas, apresentou-se com valor em torno de 15% do valor médio dos módulos de elasticidade longitudinais;

i- Os coeficientes de Poisson, determinados em ensaios de tração em tiras de compensado, como já esperado, apresentaram-se bem pequenos (entre 0,09 e 0,03).

j- Dos valores experimentais obtidos para os módulos de elasticidade e para os coeficientes de Poisson do compensado, pôde-se verificar, com razoável aproximação, a condição elástica:

\[ \frac{\nu_{xy}}{E_x} = \frac{\nu_{yx}}{E_y} \]

III- Sobre os parafusos auto-atarrazantes 1/4"x60mm e sua utilização na ligação de chapas de madeira compensada e peças de madeira maciça da espécie Peroba Rosa

a- Os parafusos auto-atarrazantes 1/4"x60mm utilizados neste estudo, em relação à resistência à tração, obedecem às especificações da ASTM-A307 (1980). Possuem tensão de escoamento elevada, em função da forma rolada como são fabricados;

c- O emprego destes parafusos para unir chapas de compensado e peças de madeira maciça mostrou-se viável, porquanto, os ensaios realizados apresentaram valores para resistência ao arranço direto bastante superiores aos dos pregos de mesmo diâmetro, e valores de resistência aos esforços laterais equivalentes aos dos parafusos comuns com porca e arruêlas, também de mesmo diâmetro;

d- A direção de cravação do parafuso auto-atarrazante em relação às fibras do bloco de madeira maciça da ligação, no plano transversal, não influiu na resistência ao arrancamento direto;

e- A resistência ao deslocamento lateral do parafuso autolarrazante, na ligação das chapas de compensado e as peças de madeira maciça, dependeu, sobretudo, da direção do carregamento em relação às fibras do bloco de madeira maciça, onde o parafuso é cravado, sendo a influência da direção das fibras de face da madeira compensada desprezível;

f- Os estudos de NEWLIN e GAHAGAN (1938) e as recomendações da NFPA (1977) sobre a utilização dos parafusos auto-atarrazantes para unir peças de madeira, válidas para espécies americanas, mostraram-se inadequados para ligações com peças de madeira de espécies nacionais e, sobretudo, para ligações com chapas de madeira compensada e peças de madeira maciça da espécie Peroba Rosa, visto, diferirem completamente dos valores experimentais obtidos, tanto para a resistência ao arrancamento direto, como para a resistência ao deslocamento lateral;

IV- Sobre o projeto do silo hexagonal de madeira compensada com fundo tremonhado

a- Os formatos que mais se adaptam a construção de silos com chapas de compensado são os de seções poligonais. Isto pela perspectiva de adotar-se uma das dimensões da própria chapa ou um seu múltiplo, como lado do polígono;

b- Dentre as seções poligonais, a hexagonal apresentou-se como uma das soluções mais racionais, porquanto, embora menos simples, construtivamente, que as retangulares, possibilita capa-
cidades de armazéns razoáveis para o uso em fazendas, com la-
dos relativamente pequenos, o que implica em menores esforços na
estrutura;

- A forma poligonal possibilitou a adoção de um esquema
construtivo para o silo, onde, estruturalmente, suas peças com di-
mensões comerciais normais, foram utilizadas de modo bastante ra-
cional na absorção dos carregamentos atuantes.

Assim, para suportar as ações devido ao peso próprio e
ao material ensilado, observa-se que:
- a rigidez das chapas compensadas foi aproveitada tanto
dentro de seu próprio plano, "ação de chapa", como perpendicular-
mente a ele, "ação de placa";
- os ânênis de enrijeecimento do corpo do silo ficaram sub-
metidos à flexo-tração, auto-equilibrando o carregamento horizon-
tal;
- os pilares internos da parte superior do silo foram
considerados como peças curtas, devido ao contraventamento late-
ral, ao longo de toda sua altura, pelas chapas compensadas dis-
postas na forma hexagonal;
- a viga de sustentação da tremonha do silo; ao equili-
brar as cargas horizontais e verticais, decorrentes da suspensão
desta tremonha, ficou solicitada a esforços de flexo-compressão
obliqua, auto-equilibrando as cargas horizontais;
- os pilares da parte inferior do silo ficaram solicita-
dos simplesmente a cargas axiais verticais, visto a viga de sus-
tentação da tremonha absorver as horizontais;

Em relação à ação do vento, a estrutura do silo, como um
todo, foi verificada com respeito às forças de arrasto tendo apre-
sentado, quando vazia e considerado o peso de uma fundação conti-
nua de concreto armado, segurança ao tombamento próxima de dois.

As ações decorrentes de recalques de apoio e efeitos tér-
micos não foram consideradas no projeto, em consequência da estru-
tura ser em madeira e comportar-se no sentido de absorvê-las, atra-
vés de acomodações de corpo rígido;

Logo, as dimensões pré-fixadas, dentro de padrões comer-
ciais normais, para todos os elementos do silo, foram verificadas
às ações do peso próprio e do material ensilado, bem como à ação
do vento, mostrando-se satisfatórias.
d- A solução dos compensados, em sua "ação de placa", por elementos finitos, considerando-os como material plano e ortotrópico e utilizando as constantes elásticas determinadas, experimentalmente, propiciou valores para tensões de flexão e deslocamentos transversais coerentes, embora distintos dos que se obtém ao se considerar o material como isotrópico;

e- Para a "ação de chapa" a solução por elementos finitos, considerando a ortotropia do material, mostrou valores praticamente iguais aos obtidos desprezando os coeficientes de Poisson, ou seja, admitindo as tensões e deformações independentes em cada direção.

V- Sobre a construção e experimentação do modelo da tremonha do silo em escala natural

a- A construção da tremonha piramidal mostrou ser o formato hexagonal, embora não convencional, bastante simples de executar, bem como, confirmou a facilidade de instalação dos parafusos auto-atarraxantes na ligação de chapas de madeira compensada e peças de madeira maciça;

b- A experimentação destacou a viabilidade de ensaiar o modelo em escala natural, dentro do laboratório, aproveitando toda sua infra-estrutura para realização de ensaios, tendo em vista a metodologia empregada;

c- Os resultados experimentais obtidos dos ensaios e os correspondentes valores teóricos calculados mostraram-se bastante coerentes, justificando todos os dados, teorias, hipóteses, aplicações e procedimentos utilizados, tanto no projeto teórico, como na realização dos ensaios;

d- O modelo, projetado para suportar as ações do material ensilado, recomendada pela norma alemã DIN 1055 (1986) para a condição de descarga do silo, manteve-se com um comportamento linear de suas deformações e deslocamentos em relação à variação da carga aplicada, para valores até 50% maiores àqueles recomendados;

e- Na experimentação foi atingida a carga limite do equi
pamento de ensaio, quase três vezes a recomendada pela DIN 1055 (1986), sem que o modelo apresentasse ruptura.

As deformações e deslocamentos das chapas compensadas e das ligações, porém, mostraram-se bastante acentuadas, ainda que a estrutura do modelo como um todo, mantivesse sua forma inicial;

Diante de todos esses estudos, têm-se como conclusões finais desta pesquisa que:

1- Os silos verticais aéreos, como seção transversal hexagonal, construídos com chapas de madeira compensada e peças de madeira maciça, interligadas através de parafusos auto-atarraxantes, são viáveis técnica e construtivamente, dentro de necessidades de armazenagens, compatíveis com sua utilização em fazendas;

2- O esquema construtivo, bem como o esquema estrutural utilizado para o projeto desta estrutura, conduziram a resultados satisfatórios, portanto, mostram-se convenientes.
REFERÊNCIAS BIBLIOGRÁFICAS


BIBLIOGRAFIA


MANUAL de armazenagem na fazenda (1975). Brasília, CIBRAZEM. não paginado.


ANEXO 1

Sobre a resistência dos parafusos auto-arraxantes solicitados ao arrancamento direto e a esforços laterais.
Fig. 1 - Influência da relação espessura da cobrejunda/diâmetro do fuste do parafuso, na carga limite proporcional de parafusos auto-atarraxantes penetrando na superfície lateral - NEWLIN e GAHAGAN (1938).

Fig. 2 - Influência da penetração do fuste do parafuso no bloco da ligação na carga limite proporcional de parafusos auto-atarraxantes instalados na lateral do bloco - NEWLIN e GAHAGAN (1938).
<table>
<thead>
<tr>
<th>GRUPO</th>
<th>ESPÉCIE DE MADEIRA</th>
<th>EQUAÇÃO*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cedar, northern &amp; southern white</td>
<td>$E_{1d} = 1500'_{s}$</td>
</tr>
<tr>
<td></td>
<td>Fir, balsam &amp; commercial white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hemlock, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pine, ponderosa, sugar, northern white &amp; western white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spruce, Engelmann red</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sycamore &amp; white</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Aspen, &amp; largartoosh aspen</td>
<td>$F_{sld} = 1700'_{s}$</td>
</tr>
<tr>
<td></td>
<td>Basswood</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cedar, Alaska, Port Orford, &amp; western red</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chestnut</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cottonwood, black &amp; eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cypress, southern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Douglas fir (Rocky Mountain type)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hemlock, western</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pine, Norway</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Redwood</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tamarack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yellow poplar</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRUPO</th>
<th>ESPÉCIE DE MADEIRA</th>
<th>EQUAÇÃO*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Ash, black</td>
<td>$F_{sld} = 1900'_{s}$</td>
</tr>
<tr>
<td></td>
<td>Birch, paper</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Douglas fir (Coast type)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elm (soft), American (grey) slippery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gum, black, red &amp; tupelo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Larch, western</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maple, (soft), red &amp; silver</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pine, southern yellow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sycamore</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ash, commercial white</td>
<td>$F_{sld} = 2200'_{s}$</td>
</tr>
<tr>
<td></td>
<td>Beach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Birch, sweet &amp; yellow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elm, rock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hickory, true &amp; pecan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maple (hard), black &amp; sugar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oak, commercial red &amp; white</td>
<td></td>
</tr>
</tbody>
</table>

* Estas equações são válidas para ligações com parafusos auto-ataxarrantes onde a relação espessura da cobrejunta/diâmetro do parafuso for 3,5 e a penetração da parte rosqueada do parafuso no membro principal da ligação varie de 11 vezes seu diâmetro para madeiras do grupo 1 a 7 vezes para madeiras do grupo 4. Os valores deste quadro assumem que o fuste do parafuso atinga a superfície de contato entre a cobrejunta e o bloco. Estas cargas de projeto aplicam-se a parafusos tendo um limite de escoamento de 45000 lb/in² e madeira com 15% de umidade. $\delta_s$ é o diâmetro do fuste do parafuso auto-ataxarrante. 

\[ F_{sld} = 1 \text{ lb} \] ; \[ \delta_s = \text{in} \]

Quadro 1 - Equações para o cálculo da carga lateral de projeto para parafusos auto-ataxarrantes cravados na lateral do bloco - segundo NEWLIN E GAHAGAN (1938).
<table>
<thead>
<tr>
<th>GRUPO</th>
<th>ESPECIE DE MADEIRA</th>
<th>DENSIDADE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ash, Commercial White</td>
<td>0,62</td>
</tr>
<tr>
<td></td>
<td>Beech</td>
<td>0,68</td>
</tr>
<tr>
<td></td>
<td>Birch, Sweet &amp; Yellow</td>
<td>0,66</td>
</tr>
<tr>
<td></td>
<td>Hickory &amp; Pecan</td>
<td>0,75</td>
</tr>
<tr>
<td></td>
<td>Maple, Black &amp; Sugar</td>
<td>0,66</td>
</tr>
<tr>
<td></td>
<td>Oak, Red e White</td>
<td>0,67</td>
</tr>
<tr>
<td>2</td>
<td>Douglas Fir - Larch</td>
<td>0,51</td>
</tr>
<tr>
<td></td>
<td>Southern Pine</td>
<td>0,55</td>
</tr>
<tr>
<td></td>
<td>Sweetgum &amp; Tupelo</td>
<td>0,54</td>
</tr>
<tr>
<td>3</td>
<td>California Redwood (Close grain)</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>Douglas Fir, South</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td>Eastern Hemlock - Tamarack</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>Eastern Spruce</td>
<td>0,43</td>
</tr>
<tr>
<td></td>
<td>Hem-Fir</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>Lodgepole Pine</td>
<td>0,44</td>
</tr>
<tr>
<td></td>
<td>Mountain Hemlock</td>
<td>0,47</td>
</tr>
<tr>
<td></td>
<td>Northern Aspen</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>Northern Pine</td>
<td>0,46</td>
</tr>
<tr>
<td></td>
<td>Ponderosa Pine</td>
<td>0,49</td>
</tr>
<tr>
<td></td>
<td>Ponderosa_Pine-Sugar Pine</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>Red Pine</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>Sitka Spruce</td>
<td>0,43</td>
</tr>
<tr>
<td></td>
<td>Southern Cypress</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td>Spruce-Pine-Fir</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>Western Hemlock</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td>Yellow Póplar</td>
<td>0,46</td>
</tr>
<tr>
<td>4</td>
<td>Aspen</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>Balsam Fir</td>
<td>0,38</td>
</tr>
<tr>
<td></td>
<td>Black Cottonwood</td>
<td>0,33</td>
</tr>
<tr>
<td></td>
<td>California Redwood (Open grain)</td>
<td>0,37</td>
</tr>
<tr>
<td></td>
<td>Coast Sitka Spruce</td>
<td>0,39</td>
</tr>
<tr>
<td></td>
<td>Coast Species</td>
<td>0,39</td>
</tr>
<tr>
<td></td>
<td>Cottonwood, Eastern</td>
<td>0,41</td>
</tr>
<tr>
<td></td>
<td>Eastern White Pine</td>
<td>0,38</td>
</tr>
<tr>
<td></td>
<td>Eastern Woods</td>
<td>0,38</td>
</tr>
<tr>
<td></td>
<td>Engelmann Spruce - Alpine Fir</td>
<td>0,36</td>
</tr>
<tr>
<td></td>
<td>Idaho White Pine</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>Northern Species</td>
<td>0,35</td>
</tr>
<tr>
<td></td>
<td>Northern White Cedar</td>
<td>0,31</td>
</tr>
<tr>
<td></td>
<td>West Coast Woods (Mixed Species)</td>
<td>0,35</td>
</tr>
<tr>
<td></td>
<td>Western Cedars</td>
<td>0,35</td>
</tr>
<tr>
<td></td>
<td>Western Whites Pine</td>
<td>0,40</td>
</tr>
<tr>
<td></td>
<td>White Woods (Western Woods)</td>
<td>0,35</td>
</tr>
</tbody>
</table>

* Baseado em peso e volume secos em estufa.

Quadro 2 - Agrupamento de espécies de madeira para projeto de ligações - NFPA (1977).
| Peso \( \rho_W \) | DIÂMETRO DO PARAFUSO AUTO-ÁTARRAXANTES - ** \( \delta_s \) |
|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| 0.250 | 0.3125 | 0.375 | 0.4375 | 0.500 | 0.5625 | 0.625 | 0.750 | 0.875 | 1.000 | 1.125 | 1.250 |
| 0.75 | 413 | 459 | 560 | 629 | 695 | 759 | 822 | 942 | 1068 | 1168 | 1277 |
| 0.80 | 357 | 422 | 464 | 543 | 600 | 656 | 709 | 813 | 913 | 1009 | 1103 |
| 0.85 | 368 | 413 | 473 | 551 | 587 | 641 | 694 | 796 | 893 | 987 | 1078 |
| 0.90 | 341 | 403 | 463 | 519 | 574 | 627 | 678 | 778 | 872 | 965 | 1064 |
| 0.95 | 311 | 367 | 421 | 473 | 523 | 571 | 618 | 708 | 765 | 879 | 960 |
| 1.00 | 260 | 307 | 352 | 396 | 437 | 477 | 516 | 592 | 664 | 734 | 802 |
| 1.05 | 293 | 299 | 342 | 384 | 425 | 464 | 502 | 576 | 666 | 744 | 820 |
| 1.10 | 232 | 274 | 314 | 363 | 400 | 426 | 461 | 528 | 603 | 656 | 716 |
| 1.15 | 216 | 258 | 296 | 332 | 367 | 401 | 434 | 498 | 569 | 617 | 674 |
| 1.20 | 212 | 250 | 287 | 322 | 356 | 389 | 421 | 482 | 542 | 599 | 654 |
| 1.25 | 205 | 242 | 278 | 312 | 345 | 377 | 400 | 460 | 525 | 580 | 634 |
| 1.30 | 195 | 235 | 269 | 302 | 334 | 365 | 395 | 453 | 508 | 562 | 613 |
| 1.35 | 192 | 227 | 260 | 292 | 322 | 353 | 382 | 438 | 492 | 543 | 594 |
| 1.40 | 188 | 220 | 252 | 283 | 312 | 341 | 369 | 423 | 475 | 526 | 574 |
| 1.45 | 179 | 212 | 243 | 272 | 302 | 330 | 357 | 409 | 460 | 508 | 554 |
| 1.50 | 173 | 205 | 236 | 264 | 291 | 318 | 344 | 395 | 443 | 492 | 535 |
| 1.55 | 171 | 194 | 221 | 246 | 271 | 296 | 320 | 367 | 412 | 455 | 497 |
| 1.60 | 155 | 183 | 210 | 236 | 261 | 285 | 308 | 353 | 397 | 438 | 479 |
| 1.65 | 149 | 176 | 202 | 227 | 251 | 274 | 296 | 340 | 381 | 422 | 461 |
| 1.70 | 142 | 169 | 194 | 218 | 241 | 263 | 286 | 326 | 367 | 405 | 443 |
| 1.75 | 137 | 163 | 190 | 215 | 238 | 260 | 283 | 322 | 358 | 396 | 434 |
| 1.80 | 132 | 158 | 185 | 208 | 230 | 252 | 278 | 315 | 352 | 389 | 426 |
| 1.85 | 121 | 143 | 164 | 184 | 203 | 222 | 240 | 275 | 309 | 341 | 373 |
| 1.90 | 110 | 130 | 149 | 167 | 185 | 202 | 220 | 250 | 281 | 311 | 339 |

* \( \rho_W \) = baseado em peso e volumes secos em estufa.
** \( \delta_s \) = diâmetro do parafuso, em polegadas.
*** valores de projeto para arranço direto em libras por polegada de penetração da parte rosqueada do parafuso na lateral do bloco. Carregamento de duração normal em madeira seca que permanecerá seca em serviço.

| *VALORES DE PROJETO PARA CARGA LATERAL - 1b* |
|**PARAFUSO** | **CARGA LATERAL TOTAL POR PARAFUSOS EM CORTE SIMPLES** |
| **AUTO-** | **GRUPO 1** | **GRUPO 2** | **GRUPO 3** | **GRUPO 4** |
| **ATARRAXANTE** | **PERPENDICULAR às fibras** | **PARALELA às fibras** |
| Diâmetro do fuste (in) | Comprimento (in) | 2.00 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 |
| 4" | 1/4 | 200 | 100 | 200 | 100 | 200 | 100 | 200 | 100 |
| | 3/16 | 200 | 200 | 200 | 200 | 200 | 200 | 200 | 200 |
| | 1/2 | 400 | 400 | 400 | 400 | 400 | 400 | 400 | 400 |
| | 5/8 | 470 | 470 | 470 | 470 | 470 | 470 | 470 | 470 |
| | 3/4 | 520 | 520 | 520 | 520 | 520 | 520 | 520 | 520 |
| | 7/8 | 570 | 570 | 570 | 570 | 570 | 570 | 570 | 570 |
| | 1 | 620 | 620 | 620 | 620 | 620 | 620 | 620 | 620 |
| 5/8 | 690 | 690 | 690 | 690 | 690 | 690 | 690 | 690 |
| 3/4 | 740 | 740 | 740 | 740 | 740 | 740 | 740 | 740 |
| 1 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 |
| 7" | 2/3 | 850 | 850 | 850 | 850 | 850 | 850 | 850 | 850 |
| | 7/8 | 920 | 920 | 920 | 920 | 920 | 920 | 920 | 920 |
| | 1 | 990 | 990 | 990 | 990 | 990 | 990 | 990 | 990 |

* Valores de projeto para carga lateral em libras.
* Carregamento de duração normal em madeira seca que permanecerá seca em serviço.

Quadro 4 - Valores de projeto para carga lateral de parafusos auto-atarraxantes com cobrejuntas de madeira - NFPA(1977).
**VALES DE PROJETO PARA CARGA LATERAL - 1b**

<table>
<thead>
<tr>
<th>COMPRIMENTO</th>
<th>DIÂMETRO DE PASTA</th>
<th>PARAFUSAÇO</th>
<th>AUTO-ATARRAXANTE</th>
<th>PARAFUSAÇO PARAFUSAS</th>
<th>PERPENDICULAR À FIBRAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'</td>
<td>1/4</td>
<td>240</td>
<td>145</td>
<td>210</td>
<td>160</td>
<td>155</td>
<td>120</td>
<td>125</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/16</td>
<td>265</td>
<td>240</td>
<td>265</td>
<td>195</td>
<td>190</td>
<td>140</td>
<td>180</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/8</td>
<td>420</td>
<td>235</td>
<td>320</td>
<td>240</td>
<td>230</td>
<td>140</td>
<td>235</td>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7/16</td>
<td>465</td>
<td>275</td>
<td>370</td>
<td>215</td>
<td>265</td>
<td>150</td>
<td>225</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>555</td>
<td>255</td>
<td>450</td>
<td>215</td>
<td>265</td>
<td>240</td>
<td>225</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/8</td>
<td>645</td>
<td>310</td>
<td>490</td>
<td>235</td>
<td>250</td>
<td>170</td>
<td>280</td>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/16</td>
<td>720</td>
<td>340</td>
<td>530</td>
<td>230</td>
<td>260</td>
<td>200</td>
<td>320</td>
<td>195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'</td>
<td>7/16</td>
<td>810</td>
<td>465</td>
<td>630</td>
<td>330</td>
<td>320</td>
<td>260</td>
<td>425</td>
<td>265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>895</td>
<td>540</td>
<td>730</td>
<td>405</td>
<td>420</td>
<td>315</td>
<td>540</td>
<td>325</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5/8</td>
<td>1065</td>
<td>625</td>
<td>890</td>
<td>450</td>
<td>500</td>
<td>340</td>
<td>680</td>
<td>410</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4</td>
<td>1320</td>
<td>625</td>
<td>1100</td>
<td>540</td>
<td>720</td>
<td>450</td>
<td>920</td>
<td>540</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7'</td>
<td>5/8</td>
<td>1560</td>
<td>625</td>
<td>1250</td>
<td>625</td>
<td>855</td>
<td>575</td>
<td>1250</td>
<td>695</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/16</td>
<td>1835</td>
<td>625</td>
<td>1400</td>
<td>695</td>
<td>1050</td>
<td>705</td>
<td>1400</td>
<td>805</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>1950</td>
<td>625</td>
<td>1500</td>
<td>750</td>
<td>1200</td>
<td>800</td>
<td>1500</td>
<td>950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9'</td>
<td>5/8</td>
<td>2180</td>
<td>625</td>
<td>1650</td>
<td>800</td>
<td>1320</td>
<td>950</td>
<td>1650</td>
<td>1050</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4</td>
<td>2530</td>
<td>625</td>
<td>1900</td>
<td>925</td>
<td>1600</td>
<td>1150</td>
<td>1900</td>
<td>1250</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11'</td>
<td>5/8</td>
<td>2885</td>
<td>625</td>
<td>2050</td>
<td>985</td>
<td>1750</td>
<td>1250</td>
<td>2050</td>
<td>1350</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11/16</td>
<td>3330</td>
<td>625</td>
<td>2200</td>
<td>1050</td>
<td>1900</td>
<td>1350</td>
<td>2200</td>
<td>1450</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Maiores comprimentos não aumentam as cargas.

** Valores de projeto para carga lateral em libras.

Sobre os resultados dos ensaios realizados com chapas de compensado, parafusos auto-atarraxantes e ligações entre estas chapas e peças de madeira maciça da espécie Peroba Rosa, utilizando os parafusos auto-atarraxantes.
Fig. 1 - Curva carga x deformação típica do ensaio de tração em parafusos auto-atarraxantes 1/4" x 60mm. Máquina Universal de Ensaio - INSTRON - 100KN. Velocidade de travessão - 2mm/min. Velocidade do papel - 200mm/min.
Fig. 2 - Curva deslocamento relativo x esforços, típica do ensaio de resistência à esforços laterais, das ligações entre chapas compensadas e peças de Peroba Rosa através de parafusos auto-atarraxantes.
<table>
<thead>
<tr>
<th>Carga Kgf</th>
<th>T1 - L</th>
<th>T2 - L</th>
<th>T3 - L</th>
<th>T4 - L</th>
<th>T5 - L</th>
<th>T6 - L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\varepsilon_L \times 10^{-6}$</td>
<td>$\varepsilon_T \times 10^{-6}$</td>
<td>$\varepsilon_L \times 10^{-6}$</td>
<td>$\varepsilon_T \times 10^{-6}$</td>
<td>$\Delta l \times 10^{-3}$</td>
<td>$\Delta l \times 10^{-3}$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>96,75</td>
<td>-2,25</td>
<td>110,00</td>
<td>-10,75</td>
<td>14,5</td>
<td>8,5</td>
</tr>
<tr>
<td>100</td>
<td>233,25</td>
<td>-7,00</td>
<td>221,25</td>
<td>-22,00</td>
<td>26,5</td>
<td>12,5</td>
</tr>
<tr>
<td>150</td>
<td>341,50</td>
<td>-14,50</td>
<td>330,00</td>
<td>-36,75</td>
<td>40,0</td>
<td>19,0</td>
</tr>
<tr>
<td>200</td>
<td>444,00</td>
<td>-20,25</td>
<td>445,50</td>
<td>-49,75</td>
<td>54,0</td>
<td>28,0</td>
</tr>
<tr>
<td>250</td>
<td>546,00</td>
<td>-27,25</td>
<td>530,75</td>
<td>-61,00</td>
<td>68,0</td>
<td>39,5</td>
</tr>
<tr>
<td>300</td>
<td>664,25</td>
<td>-34,00</td>
<td>667,50</td>
<td>-73,25</td>
<td>81,5</td>
<td>49,5</td>
</tr>
<tr>
<td>350</td>
<td>767,50</td>
<td>-38,75</td>
<td>778,50</td>
<td>-86,50</td>
<td>94,5</td>
<td>56,5</td>
</tr>
<tr>
<td>400</td>
<td>883,00</td>
<td>-46,25</td>
<td>893,25</td>
<td>-98,50</td>
<td>108,0</td>
<td>71,0</td>
</tr>
<tr>
<td>450</td>
<td>998,25</td>
<td>-52,50</td>
<td>1001,25</td>
<td>-108,75</td>
<td>122,5</td>
<td>82,5</td>
</tr>
<tr>
<td>500</td>
<td>1100,00</td>
<td>-58,25</td>
<td>1101,75</td>
<td>-119,75</td>
<td>136,5</td>
<td>93,0</td>
</tr>
<tr>
<td>550</td>
<td>1214,50</td>
<td>-67,50</td>
<td>1230,50</td>
<td>-130,75</td>
<td>150,5</td>
<td>102,5</td>
</tr>
<tr>
<td>600</td>
<td>1326,00</td>
<td>-72,50</td>
<td>1341,25</td>
<td>-142,50</td>
<td>166,0</td>
<td>114,5</td>
</tr>
<tr>
<td>650</td>
<td>1436,25</td>
<td>-78,00</td>
<td>1463,25</td>
<td>-153,25</td>
<td>182,5</td>
<td>128,5</td>
</tr>
<tr>
<td>700</td>
<td>1549,25</td>
<td>-84,75</td>
<td>1572,30</td>
<td>-162,50</td>
<td>195,0</td>
<td>139,0</td>
</tr>
<tr>
<td>750</td>
<td>1652,00</td>
<td>-92,25</td>
<td>1675,00</td>
<td>-172,75</td>
<td>210,0</td>
<td>149,0</td>
</tr>
<tr>
<td>800</td>
<td>1769,50</td>
<td>-97,75</td>
<td>1807,50</td>
<td>-186,25</td>
<td>222,5</td>
<td>160,5</td>
</tr>
<tr>
<td>850</td>
<td>1865,25</td>
<td>-102,00</td>
<td>1910,00</td>
<td>-197,00</td>
<td>237,5</td>
<td>173,0</td>
</tr>
<tr>
<td>900</td>
<td>1993,00</td>
<td>-106,50</td>
<td>2032,00</td>
<td>-208,75</td>
<td>255,0</td>
<td>183,0</td>
</tr>
<tr>
<td>950</td>
<td>2101,25</td>
<td>-111,00</td>
<td>2137,50</td>
<td>-222,50</td>
<td>269,5</td>
<td>195,5</td>
</tr>
<tr>
<td>1000</td>
<td>2217,50</td>
<td>-116,25</td>
<td>2265,00</td>
<td>-230,50</td>
<td>280,5</td>
<td>206,0</td>
</tr>
</tbody>
</table>

Ruptura KN
- 21,53
- 18,05
- 18,05
- 17,85
- 22,17
- 25,11

<table>
<thead>
<tr>
<th>Seção transversal (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>largura</td>
</tr>
<tr>
<td>espessura</td>
</tr>
</tbody>
</table>

1 - Valor desprezado na regressão linear
2 - Base de medida + 1 = 100mm

Quadro 1 - Valores médios no ensaio de tração paralelo às fibras de face do compensado
### ENSAIO DE TRAÇÃO - PERPENDICULAR

<table>
<thead>
<tr>
<th>Carga Kgf</th>
<th>Corpo de Prova</th>
<th>T1 - T</th>
<th>T2 - T</th>
<th>T3 - T</th>
<th>T4 - T</th>
<th>T5 - T</th>
<th>T6 - T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$e_L$ x 10^-6</td>
<td>$e_T$ x 10^-6</td>
<td>$\Delta l$ mm x 10^-3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>77,5</td>
<td>1,25</td>
<td>93,00</td>
<td>-2,75</td>
<td>13,5</td>
<td>4,5</td>
<td>4,0</td>
</tr>
<tr>
<td>140</td>
<td>156,25</td>
<td>-1,00</td>
<td>191,00</td>
<td>-10,25</td>
<td>20,5</td>
<td>9,0</td>
<td>12,0</td>
</tr>
<tr>
<td>60</td>
<td>247,00</td>
<td>-4,25</td>
<td>286,75</td>
<td>-15,50</td>
<td>24,5</td>
<td>17,5</td>
<td>19,0</td>
</tr>
<tr>
<td>80</td>
<td>334,25</td>
<td>-9,50</td>
<td>372,00</td>
<td>-24,25</td>
<td>34,5</td>
<td>27,0</td>
<td>28,0</td>
</tr>
<tr>
<td>100</td>
<td>415,75</td>
<td>-13,25</td>
<td>476,25</td>
<td>-28,25</td>
<td>43,5</td>
<td>34,0</td>
<td>36,0</td>
</tr>
<tr>
<td>120</td>
<td>520,50</td>
<td>-18,50</td>
<td>566,75</td>
<td>-31,75</td>
<td>56,0</td>
<td>41,5</td>
<td>43,0</td>
</tr>
<tr>
<td>140</td>
<td>587,00</td>
<td>-23,00</td>
<td>673,00</td>
<td>-38,25</td>
<td>66,0</td>
<td>48,0</td>
<td>48,0</td>
</tr>
<tr>
<td>160</td>
<td>689,25</td>
<td>-26,50</td>
<td>756,75</td>
<td>-41,25</td>
<td>77,0</td>
<td>56,5</td>
<td>60,5</td>
</tr>
<tr>
<td>180</td>
<td>760,50</td>
<td>-28,75</td>
<td>845,75</td>
<td>-44,75</td>
<td>88,0</td>
<td>62,5</td>
<td>69,9</td>
</tr>
<tr>
<td>200</td>
<td>841,25</td>
<td>-31,75</td>
<td>945,50</td>
<td>-50,00</td>
<td>98,0</td>
<td>70,5</td>
<td>76,5</td>
</tr>
<tr>
<td>220</td>
<td>921,50</td>
<td>-34,25</td>
<td>1043,25</td>
<td>-56,00</td>
<td>107,5</td>
<td>78,0</td>
<td>84,0</td>
</tr>
<tr>
<td>240</td>
<td>1023,75</td>
<td>-36,75</td>
<td>1147,50</td>
<td>-62,25</td>
<td>120,0</td>
<td>85,0</td>
<td>92,5</td>
</tr>
<tr>
<td>260</td>
<td>1100,00</td>
<td>-40,25</td>
<td>1245,00</td>
<td>-68,25</td>
<td>133,5</td>
<td>93,5</td>
<td>101,5</td>
</tr>
<tr>
<td>280</td>
<td>1182,50</td>
<td>-42,00</td>
<td>1341,25</td>
<td>-72,25</td>
<td>141,0</td>
<td>99,5</td>
<td>111,0</td>
</tr>
<tr>
<td>300</td>
<td>1268,25</td>
<td>-47,50</td>
<td>1446,75</td>
<td>-77,00</td>
<td>151,0</td>
<td>107,0</td>
<td>119,5</td>
</tr>
<tr>
<td>320</td>
<td>1363,50</td>
<td>-51,00</td>
<td>1544,25</td>
<td>-81,75</td>
<td>160,5</td>
<td>114,5</td>
<td>127,5</td>
</tr>
<tr>
<td>340</td>
<td>1446,25</td>
<td>-56,00</td>
<td>1641,25</td>
<td>-86,75</td>
<td>172,5</td>
<td>122,0</td>
<td>137,0</td>
</tr>
<tr>
<td>360</td>
<td>1524,50</td>
<td>-59,50</td>
<td>1737,00</td>
<td>-91,50</td>
<td>184,0</td>
<td>129,5</td>
<td>145,5</td>
</tr>
<tr>
<td>380</td>
<td>1600,50</td>
<td>-62,50</td>
<td>1848,00</td>
<td>-95,25</td>
<td>192,5</td>
<td>137,5</td>
<td>155,5</td>
</tr>
<tr>
<td>400</td>
<td>1696,50</td>
<td>-65,50</td>
<td>1950,00</td>
<td>-101,00</td>
<td>205,5</td>
<td>145,0</td>
<td>163,5</td>
</tr>
<tr>
<td>420</td>
<td>1793,75</td>
<td>-67,75</td>
<td>2038,50</td>
<td>-106,75</td>
<td>218,0</td>
<td>151,0</td>
<td>172,0</td>
</tr>
<tr>
<td>440</td>
<td>1855,00</td>
<td>-70,25</td>
<td>2136,25</td>
<td>-112,00</td>
<td>229,0</td>
<td>159,5</td>
<td>183,0</td>
</tr>
<tr>
<td><strong>Ruptura</strong></td>
<td><strong>9,88</strong></td>
<td><strong>7,70</strong></td>
<td><strong>5,79</strong></td>
<td><strong>9,22</strong></td>
<td><strong>8,73</strong></td>
<td><strong>19,13</strong></td>
<td></td>
</tr>
</tbody>
</table>

**Seção transversal (cm):**

- largura: 2,605
- espess.: 1,727

1° Valores desprezados na regressão linear
2° Base de medida $|l|=100\text{mm}$

Quadro 2 - Valores médios no ensaio de tração perpendicular às fibras de face do compensado
### Tabela de Compressão - Paralelo

<table>
<thead>
<tr>
<th>Carga Kg</th>
<th>Δ l C1 - L (mm x 10^-3)</th>
<th>Δ l C2 - L (mm x 10^-3)</th>
<th>Δ l C3 - L (mm x 10^-3)</th>
<th>Δ l C4 - L (mm x 10^-3)</th>
<th>Δ l C5 - L (mm x 10^-3)</th>
<th>Δ l C6 - L (mm x 10^-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>11,0</td>
<td>9,5</td>
<td>11,5</td>
<td>11,5</td>
<td>9,0</td>
<td>1,0</td>
</tr>
<tr>
<td>1400</td>
<td>22,5</td>
<td>18,5</td>
<td>24,5</td>
<td>25,0</td>
<td>21,5</td>
<td>5,0</td>
</tr>
<tr>
<td>600</td>
<td>37,0</td>
<td>28,5</td>
<td>39,5</td>
<td>37,0</td>
<td>32,5</td>
<td>9,5</td>
</tr>
<tr>
<td>800</td>
<td>51,0</td>
<td>37,5</td>
<td>52,5</td>
<td>51,5</td>
<td>45,5</td>
<td>15,5</td>
</tr>
<tr>
<td>1000</td>
<td>65,5</td>
<td>48,5</td>
<td>68,0</td>
<td>64,5</td>
<td>59,0</td>
<td>22,0</td>
</tr>
<tr>
<td>1200</td>
<td>81,0</td>
<td>59,0</td>
<td>82,5</td>
<td>78,5</td>
<td>72,0</td>
<td>28,5</td>
</tr>
<tr>
<td>1400</td>
<td>95,0</td>
<td>71,0</td>
<td>99,0</td>
<td>91,0</td>
<td>87,0</td>
<td>35,5</td>
</tr>
<tr>
<td>1600</td>
<td>110,0</td>
<td>83,5</td>
<td>114,5</td>
<td>104,5</td>
<td>101,0</td>
<td>41,5</td>
</tr>
<tr>
<td>1800</td>
<td>125,0</td>
<td>94,0</td>
<td>131,0</td>
<td>117,0</td>
<td>117,5</td>
<td>49,0</td>
</tr>
<tr>
<td>2000</td>
<td>141,5</td>
<td>105,5</td>
<td>146,5</td>
<td>132,0</td>
<td>129,5</td>
<td>56,5</td>
</tr>
<tr>
<td>2200</td>
<td>157,5</td>
<td>117,5</td>
<td>162,0</td>
<td>144,5</td>
<td>144,5</td>
<td>64,5</td>
</tr>
<tr>
<td>2400</td>
<td>173,0</td>
<td>130,0</td>
<td>178,0</td>
<td>157,0</td>
<td>157,5</td>
<td>72,0</td>
</tr>
<tr>
<td>2600</td>
<td>190,0</td>
<td>143,0</td>
<td>193,5</td>
<td>171,0</td>
<td>172,5</td>
<td>80,0</td>
</tr>
<tr>
<td>2800</td>
<td>206,5</td>
<td>155,0</td>
<td>210,0</td>
<td>184,5</td>
<td>189,0</td>
<td>87,0</td>
</tr>
<tr>
<td>3000</td>
<td>223,5</td>
<td>167,0</td>
<td>225,5</td>
<td>199,0</td>
<td>203,0</td>
<td>94,5</td>
</tr>
<tr>
<td>3200</td>
<td>241,0</td>
<td>180,5</td>
<td>242,0</td>
<td>213,0</td>
<td>218,5</td>
<td>102,5</td>
</tr>
<tr>
<td>3400</td>
<td>257,5</td>
<td>194,0</td>
<td>259,5</td>
<td>229,0</td>
<td>235,0</td>
<td>111,5</td>
</tr>
<tr>
<td>3600</td>
<td>276,0</td>
<td>206,5</td>
<td>276,5</td>
<td>239,0</td>
<td>250,5</td>
<td>119,0</td>
</tr>
<tr>
<td>3800</td>
<td>293,0</td>
<td>220,5</td>
<td>295,0</td>
<td>255,5</td>
<td>267,0</td>
<td>127,5</td>
</tr>
<tr>
<td>4000</td>
<td>311,0</td>
<td>232,5</td>
<td>313,0</td>
<td>269,5</td>
<td>283,5</td>
<td>137,5</td>
</tr>
<tr>
<td>4200</td>
<td>329,0</td>
<td>247,0</td>
<td>333,5</td>
<td>284,5</td>
<td>301,5</td>
<td>145,0</td>
</tr>
<tr>
<td>4400</td>
<td>349,0</td>
<td>261,5</td>
<td>356,0</td>
<td>299,5</td>
<td>320,0</td>
<td>152,5</td>
</tr>
<tr>
<td>4600</td>
<td>370,5</td>
<td>278,0</td>
<td>382,0</td>
<td>316,0</td>
<td>339,5</td>
<td>161,5</td>
</tr>
<tr>
<td>4800</td>
<td>392,0</td>
<td>294,5</td>
<td>409,5</td>
<td>332,5</td>
<td>352,5</td>
<td>169,5</td>
</tr>
<tr>
<td>5000</td>
<td>418,0</td>
<td>313,0</td>
<td>443,0</td>
<td>349,0</td>
<td>383,0</td>
<td>179,5</td>
</tr>
<tr>
<td>5200</td>
<td>443,0</td>
<td>334,5</td>
<td>486,5</td>
<td>369,5</td>
<td>409,0</td>
<td>188,0</td>
</tr>
<tr>
<td>5400</td>
<td>483,0</td>
<td>361,5</td>
<td>530,0</td>
<td>389,5</td>
<td>432,5</td>
<td>197,5</td>
</tr>
<tr>
<td>Ruptura KN</td>
<td>69,85</td>
<td>67,98</td>
<td>71,12</td>
<td>73,08</td>
<td>75,05</td>
<td>90,74</td>
</tr>
</tbody>
</table>

### Seção Transversal (cm)

<table>
<thead>
<tr>
<th>Largura</th>
<th>5,093</th>
<th>5,070</th>
<th>5,084</th>
<th>5,060</th>
<th>5,070</th>
<th>5,069</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espessura</td>
<td>5,288</td>
<td>5,303</td>
<td>5,306</td>
<td>5,339</td>
<td>5,283</td>
<td>5,120</td>
</tr>
</tbody>
</table>

1º - Valores desprezados na regressão linear

Quadro 3 - Valores médios dos ensaios de compressão paralela às fibras de face do compensado
### ENSAIO DE COMPRESSÃO - PERPENDICULAR

<table>
<thead>
<tr>
<th>Carga Kgf</th>
<th>C1 - T</th>
<th>C2 - T</th>
<th>C3 - T</th>
<th>C4 - T</th>
<th>C5 - T</th>
<th>C6 - T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δl mm</td>
<td>Δl mm</td>
<td>Δl mm</td>
<td>Δl mm</td>
<td>Δl mm</td>
<td>Δl mm</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1200</td>
<td>6,0</td>
<td>12,0</td>
<td>0</td>
<td>4,5</td>
<td>6,5</td>
<td>4,5</td>
</tr>
<tr>
<td>1400</td>
<td>12,0</td>
<td>21,0</td>
<td>5,5</td>
<td>9,5</td>
<td>11,5</td>
<td>10,0</td>
</tr>
<tr>
<td>1600</td>
<td>18,5</td>
<td>31,5</td>
<td>11,5</td>
<td>15,5</td>
<td>15,5</td>
<td>16,5</td>
</tr>
<tr>
<td>1800</td>
<td>25,5</td>
<td>39,5</td>
<td>18,5</td>
<td>21,0</td>
<td>19,5</td>
<td>25,0</td>
</tr>
<tr>
<td>2000</td>
<td>33,0</td>
<td>49,5</td>
<td>26,0</td>
<td>26,5</td>
<td>25,5</td>
<td>32,5</td>
</tr>
<tr>
<td>2200</td>
<td>40,5</td>
<td>60,5</td>
<td>33,0</td>
<td>33,0</td>
<td>32,0</td>
<td>40,0</td>
</tr>
<tr>
<td>2400</td>
<td>47,5</td>
<td>71,0</td>
<td>41,5</td>
<td>41,0</td>
<td>38,5</td>
<td>47,5</td>
</tr>
<tr>
<td>2600</td>
<td>55,0</td>
<td>82,0</td>
<td>49,0</td>
<td>47,0</td>
<td>45,0</td>
<td>55,5</td>
</tr>
<tr>
<td>2800</td>
<td>63,0</td>
<td>92,5</td>
<td>57,5</td>
<td>54,5</td>
<td>53,0</td>
<td>65,0</td>
</tr>
<tr>
<td>3000</td>
<td>71,0</td>
<td>104,0</td>
<td>66,0</td>
<td>61,5</td>
<td>69,5</td>
<td>74,0</td>
</tr>
<tr>
<td>3200</td>
<td>79,5</td>
<td>115,0</td>
<td>74,0</td>
<td>70,0</td>
<td>68,5</td>
<td>82,0</td>
</tr>
<tr>
<td>3400</td>
<td>87,0</td>
<td>129,0</td>
<td>82,5</td>
<td>77,0</td>
<td>76,0</td>
<td>89,5</td>
</tr>
<tr>
<td>3600</td>
<td>95,5</td>
<td>139,0</td>
<td>91,0</td>
<td>85,0</td>
<td>84,0</td>
<td>99,5</td>
</tr>
<tr>
<td>3800</td>
<td>103,5</td>
<td>150,0</td>
<td>100,0</td>
<td>94,0</td>
<td>91,5</td>
<td>108,5</td>
</tr>
<tr>
<td>4000</td>
<td>112,0</td>
<td>161,0</td>
<td>108,5</td>
<td>102,0</td>
<td>99,5</td>
<td>118,0</td>
</tr>
<tr>
<td>4200</td>
<td>119,5</td>
<td>172,0</td>
<td>116,5</td>
<td>110,0</td>
<td>107,5</td>
<td>126,5</td>
</tr>
<tr>
<td>4400</td>
<td>128,0</td>
<td>185,0</td>
<td>124,0</td>
<td>119,0</td>
<td>115,0</td>
<td>135,0</td>
</tr>
<tr>
<td>4600</td>
<td>136,0</td>
<td>197,0</td>
<td>133,5</td>
<td>128,0</td>
<td>123,5</td>
<td>143,5</td>
</tr>
<tr>
<td>4800</td>
<td>144,5</td>
<td>208,0</td>
<td>140,5</td>
<td>137,0</td>
<td>132,5</td>
<td>153,0</td>
</tr>
<tr>
<td>5000</td>
<td>153,0</td>
<td>220,5</td>
<td>148,0</td>
<td>145,0</td>
<td>141,0</td>
<td>162,0</td>
</tr>
<tr>
<td>5200</td>
<td>161,5</td>
<td>232,0</td>
<td>157,5</td>
<td>154,0</td>
<td>149,0</td>
<td>172,5</td>
</tr>
<tr>
<td>5400</td>
<td>170,0</td>
<td>245,0</td>
<td>162,5</td>
<td>164,0</td>
<td>158,0</td>
<td>182,5</td>
</tr>
<tr>
<td>5600</td>
<td>179,0</td>
<td>257,0</td>
<td>170,0</td>
<td>171,0</td>
<td>166,5</td>
<td>191,5</td>
</tr>
<tr>
<td>5800</td>
<td>187,0</td>
<td>269,0</td>
<td>178,5</td>
<td>180,0</td>
<td>174,5</td>
<td>202,5</td>
</tr>
<tr>
<td>6000</td>
<td>195,5</td>
<td>282,0</td>
<td>185,5</td>
<td>188,0</td>
<td>184,0</td>
<td>212,0</td>
</tr>
<tr>
<td>6200</td>
<td>204,5</td>
<td>295,0</td>
<td>193,5</td>
<td>196,0</td>
<td>192,5</td>
<td>221,0</td>
</tr>
<tr>
<td>6400</td>
<td>213,0</td>
<td>308,5</td>
<td>201,5</td>
<td>205,0</td>
<td>200,5</td>
<td>232,5</td>
</tr>
<tr>
<td>Ruptura RN</td>
<td>87,80</td>
<td>77,00</td>
<td>80,44</td>
<td>104,97</td>
<td>89,27</td>
<td>87,31</td>
</tr>
</tbody>
</table>

*Seção transversal (cm)*

- largura: 5,063, 5,041, 5,083, 5,070, 5,083, 5,058
- espessura: 5,208, 5,353, 5,466, 5,366, 5,280, 5,320

1- Valores desprezados na regressão linear

Quadro 4- Valores médios dos ensaios de compressão perpendicular às fibras de face do compensado
<table>
<thead>
<tr>
<th>Carga Kgf</th>
<th>Corpo de prova</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$F_1 - L$</td>
<td>$F_2 - L$</td>
</tr>
<tr>
<td>$x 10^{-3}$</td>
<td>$x 10^{-3}$</td>
<td>$x 10^{-3}$</td>
</tr>
<tr>
<td>10</td>
<td>132,0</td>
<td>152,0</td>
</tr>
<tr>
<td>15</td>
<td>248,5</td>
<td>316,0</td>
</tr>
<tr>
<td>15</td>
<td>365,0</td>
<td>467,0</td>
</tr>
<tr>
<td>20</td>
<td>488,0</td>
<td>613,0</td>
</tr>
<tr>
<td>25</td>
<td>602,0</td>
<td>761,5</td>
</tr>
<tr>
<td>30</td>
<td>722,0</td>
<td>915,0</td>
</tr>
<tr>
<td>35</td>
<td>839,5</td>
<td>1064,0</td>
</tr>
<tr>
<td>40</td>
<td>955,5</td>
<td>1218,0</td>
</tr>
<tr>
<td>45</td>
<td>1072,0</td>
<td>1369,5</td>
</tr>
<tr>
<td>50</td>
<td>1190,0</td>
<td>1525,0</td>
</tr>
<tr>
<td>55</td>
<td>1306,0</td>
<td>1662,5</td>
</tr>
<tr>
<td>60</td>
<td>1425,5</td>
<td>1828,5</td>
</tr>
<tr>
<td>65</td>
<td>1545,5</td>
<td>1985,5</td>
</tr>
<tr>
<td>70</td>
<td>1668,0</td>
<td>2149,0</td>
</tr>
<tr>
<td>75</td>
<td>1792,5</td>
<td>2317,5</td>
</tr>
<tr>
<td>80</td>
<td>1909,0</td>
<td>2480,0</td>
</tr>
<tr>
<td>85</td>
<td>2032,5</td>
<td>2654,0</td>
</tr>
<tr>
<td>90</td>
<td>2153,0</td>
<td>2817,5</td>
</tr>
<tr>
<td>95</td>
<td>2277,0</td>
<td>2996,0</td>
</tr>
<tr>
<td>100</td>
<td>2400,5</td>
<td>3168,0</td>
</tr>
<tr>
<td>Ruptura KN</td>
<td>0,77</td>
<td>0,59</td>
</tr>
<tr>
<td>Seção transversal (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>largura</td>
<td>4,983</td>
<td>4,905</td>
</tr>
<tr>
<td>espess.</td>
<td>1,793</td>
<td>1,783</td>
</tr>
</tbody>
</table>

1- Valores desprezados na regressão linear

Quadro 5- Valores médios dos ensaios de flexão paralelos às fibras de face do compensado
### ENSAIO DE FLEXÃO - PERPENDICULAR

<table>
<thead>
<tr>
<th>Carga Kgf x 0,353</th>
<th>Corpo de Prova</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F1 - T</td>
</tr>
<tr>
<td></td>
<td>ω mm x 10^-3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1,5</td>
<td>35,0</td>
</tr>
<tr>
<td>1,10</td>
<td>69,5</td>
</tr>
<tr>
<td>15</td>
<td>101,5</td>
</tr>
<tr>
<td>20</td>
<td>134,5</td>
</tr>
<tr>
<td>25</td>
<td>166,0</td>
</tr>
<tr>
<td>30</td>
<td>199,0</td>
</tr>
<tr>
<td>35</td>
<td>227,5</td>
</tr>
<tr>
<td>40</td>
<td>260,5</td>
</tr>
<tr>
<td>45</td>
<td>292,0</td>
</tr>
<tr>
<td>50</td>
<td>325,5</td>
</tr>
<tr>
<td>55</td>
<td>357,0</td>
</tr>
<tr>
<td>60</td>
<td>388,0</td>
</tr>
<tr>
<td>65</td>
<td>420,5</td>
</tr>
<tr>
<td>70</td>
<td>455,5</td>
</tr>
<tr>
<td>75</td>
<td>488,0</td>
</tr>
<tr>
<td>80</td>
<td>524,5</td>
</tr>
<tr>
<td>85</td>
<td>558,0</td>
</tr>
<tr>
<td>90</td>
<td>592,0</td>
</tr>
<tr>
<td>95</td>
<td>625,0</td>
</tr>
<tr>
<td>100</td>
<td>659,5</td>
</tr>
<tr>
<td>Ruptura KN</td>
<td>1,09</td>
</tr>
</tbody>
</table>

Seção transversal (cm)
- largura: 4,865, 4,808, 4,885, 5,080, 4,883, 4,918
- espess.: 1,793, 1,783, 1,785, 1,815, 1,768, 1,733

1- Valores desprezados na regressão linear

Quadro 6- Valores médios dos ensaios de flexão perpendiculares às fibras de face do compensado
### ENSAIO DE TORÇÃO

<table>
<thead>
<tr>
<th>Carga Kgf</th>
<th>TO - 1</th>
<th>TO - 2</th>
<th>TO - 3</th>
<th>TO - 4</th>
<th>TO - 5</th>
<th>TO - 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 0,353</td>
<td>(u_0^0) mm (x 10^{-3})</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>107,5</td>
<td>66,0</td>
<td>45,0</td>
<td>85,0</td>
<td>73,5</td>
<td>76,5</td>
</tr>
<tr>
<td>12</td>
<td>180,5</td>
<td>118,0</td>
<td>74,0</td>
<td>135,5</td>
<td>140,0</td>
<td>160,5</td>
</tr>
<tr>
<td>3</td>
<td>265,5</td>
<td>180,5</td>
<td>201,5</td>
<td>199,5</td>
<td>198,5</td>
<td>233,0</td>
</tr>
<tr>
<td>4</td>
<td>348,5</td>
<td>252,5</td>
<td>275,0</td>
<td>275,0</td>
<td>265,5</td>
<td>315,5</td>
</tr>
<tr>
<td>5</td>
<td>428,5</td>
<td>312,0</td>
<td>344,0</td>
<td>355,5</td>
<td>341,0</td>
<td>401,5</td>
</tr>
<tr>
<td>6</td>
<td>517,5</td>
<td>378,5</td>
<td>417,0</td>
<td>430,5</td>
<td>409,5</td>
<td>487,0</td>
</tr>
<tr>
<td>7</td>
<td>593,5</td>
<td>448,5</td>
<td>489,0</td>
<td>508,5</td>
<td>487,0</td>
<td>579,0</td>
</tr>
<tr>
<td>8</td>
<td>689,0</td>
<td>522,0</td>
<td>572,5</td>
<td>590,0</td>
<td>562,5</td>
<td>670,5</td>
</tr>
<tr>
<td>9</td>
<td>772,5</td>
<td>592,0</td>
<td>646,5</td>
<td>665,0</td>
<td>641,0</td>
<td>770,0</td>
</tr>
<tr>
<td>10</td>
<td>849,0</td>
<td>676,0</td>
<td>725,0</td>
<td>753,0</td>
<td>735,5</td>
<td>858,5</td>
</tr>
<tr>
<td>11</td>
<td>939,0</td>
<td>755,0</td>
<td>803,0</td>
<td>837,0</td>
<td>801,0</td>
<td>959,0</td>
</tr>
<tr>
<td>12</td>
<td>1029,0</td>
<td>828,0</td>
<td>889,5</td>
<td>914,5</td>
<td>880,0</td>
<td>1040,5</td>
</tr>
<tr>
<td>13</td>
<td>1104,0</td>
<td>898,0</td>
<td>970,5</td>
<td>992,5</td>
<td>961,5</td>
<td>1127,0</td>
</tr>
<tr>
<td>14</td>
<td>1185,0</td>
<td>967,5</td>
<td>1047,0</td>
<td>1065,0</td>
<td>1036,0</td>
<td>1220,0</td>
</tr>
<tr>
<td>15</td>
<td>1266,0</td>
<td>1039,0</td>
<td>1127,5</td>
<td>1142,0</td>
<td>1109,5</td>
<td>1306,5</td>
</tr>
<tr>
<td>16</td>
<td>1355,0</td>
<td>1120,5</td>
<td>1204,5</td>
<td>1220,5</td>
<td>1187,0</td>
<td>1406,5</td>
</tr>
<tr>
<td>17</td>
<td>1435,5</td>
<td>1202,0</td>
<td>1277,5</td>
<td>1296,0</td>
<td>1263,0</td>
<td>1491,0</td>
</tr>
<tr>
<td>18</td>
<td>1519,0</td>
<td>1271,5</td>
<td>1362,5</td>
<td>1388,5</td>
<td>1341,0</td>
<td>1586,0</td>
</tr>
<tr>
<td>19</td>
<td>1600,0</td>
<td>1350,0</td>
<td>1431,0</td>
<td>1462,0</td>
<td>1406,0</td>
<td>1673,0</td>
</tr>
<tr>
<td>20</td>
<td>1691,5</td>
<td>1418,5</td>
<td>1502,5</td>
<td>1545,5</td>
<td>1484,0</td>
<td>1750,0</td>
</tr>
<tr>
<td>21</td>
<td>1792,5</td>
<td>1506,0</td>
<td>1583,5</td>
<td>1633,5</td>
<td>1580,0</td>
<td>1841,5</td>
</tr>
<tr>
<td>22</td>
<td>1872,5</td>
<td>1575,0</td>
<td>1664,0</td>
<td>1714,5</td>
<td>1659,5</td>
<td>1953,0</td>
</tr>
<tr>
<td>23</td>
<td>1948,5</td>
<td>1651,0</td>
<td>1753,0</td>
<td>1806,0</td>
<td>1745,0</td>
<td>2035,0</td>
</tr>
<tr>
<td>24</td>
<td>2028,5</td>
<td>1728,0</td>
<td>1823,5</td>
<td>1881,5</td>
<td>1812,0</td>
<td>2125,0</td>
</tr>
<tr>
<td>25</td>
<td>2107,0</td>
<td>1797,5</td>
<td>1884,0</td>
<td>1968,5</td>
<td>1890,5</td>
<td>2215,0</td>
</tr>
</tbody>
</table>

| espessura (cm) | 1,786 | 1,775 | 1,781 | 1,824 | 1,745 | 1,749 |

1- Valores desprezados na regressão linear

Quadro 7- Valores médios dos ensaio de torção em placas de compensado
### DENSIDADE KN/m³

<table>
<thead>
<tr>
<th>Amostra</th>
<th>Chapa de Compensado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Tração Longitudinal</td>
<td>5,59</td>
</tr>
<tr>
<td>Tração Transversal</td>
<td>5,98</td>
</tr>
<tr>
<td>Flexão Longitudinal</td>
<td>6,06</td>
</tr>
<tr>
<td>Flexão Transversal</td>
<td>6,05</td>
</tr>
<tr>
<td>Média</td>
<td>5,92</td>
</tr>
<tr>
<td>Média Geral</td>
<td></td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td></td>
</tr>
</tbody>
</table>

Quadro 8- Densidade da madeira compensada

### UMIDADE %

<table>
<thead>
<tr>
<th>Amostra</th>
<th>Chapa de Compensado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Tração Longitudinal</td>
<td>6,32</td>
</tr>
<tr>
<td>Tração Transversal</td>
<td>6,32</td>
</tr>
<tr>
<td>Flexão Longitudinal</td>
<td>7,72</td>
</tr>
<tr>
<td>Flexão Transversal</td>
<td>6,64</td>
</tr>
<tr>
<td>Média</td>
<td>6,75</td>
</tr>
<tr>
<td>Média Geral</td>
<td></td>
</tr>
<tr>
<td>Desvio Padrão</td>
<td></td>
</tr>
</tbody>
</table>

Quadro 9- Umidade da madeira compensada
Comparação entre os módulos de elasticidade na direção paralela às fibras de face do compensado calculados à tração, à compressão e à flexão
- Análise de Variância

Modelo: \( Y_{ti} = \mu + \delta_t + \varepsilon_{ti} \)

\( \delta_t \) - Efeito de tratamento

**Teste de hipótese: \( \delta_t = 0 \)**

<table>
<thead>
<tr>
<th>Causa</th>
<th>Soma dos quadrados</th>
<th>Graus de liberd.</th>
<th>Quadrado Médio</th>
<th>F</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre</td>
<td>1.052.377,60</td>
<td>2</td>
<td>526.188,80</td>
<td>0,536</td>
<td>A hipótese nula não é rejeitada</td>
</tr>
<tr>
<td>Dentro</td>
<td>14.737.553,40</td>
<td>15</td>
<td>982.503,53</td>
<td></td>
<td>( \alpha &gt; 25% )</td>
</tr>
<tr>
<td>Total</td>
<td>15.789.931,00</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparação entre os módulos de elasticidade na direção perpendicular às fibras de face do compensado calculados à tração, à compressão e à flexão
- Análise de Variância

Modelo: \( Y_{ti} = \mu + \delta_t + \varepsilon_{ti} \)

\( \delta_t \) - Efeito de tratamento

**Teste de hipótese: \( \delta_t = 0 \)**

<table>
<thead>
<tr>
<th>Causa</th>
<th>Soma dos quadrados</th>
<th>Graus de liberd.</th>
<th>Quadrado Médio</th>
<th>F</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro</td>
<td>2.112.266,80</td>
<td>2</td>
<td>1.056.133,40</td>
<td>0,341</td>
<td>A hipótese nula não é rejeitada</td>
</tr>
<tr>
<td>Entre</td>
<td>46.514.373,20</td>
<td>15</td>
<td>3.100.958,20</td>
<td></td>
<td>( \alpha &gt; 25% )</td>
</tr>
<tr>
<td>Total</td>
<td>48.626.640,00</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quadro 10 - Comparação entre os módulos de elasticidade do compensado
<table>
<thead>
<tr>
<th>Parafuso</th>
<th>¹Diâmetro do Fuste (mm)</th>
<th>²Diâmetro da raiz da rosca (mm)</th>
<th>Diâmetro da rosca</th>
<th>Area Útil (rosca)</th>
<th>Carga - KN</th>
<th>Tensão - MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ruptura</td>
<td>Limite escoamento</td>
<td>Ruptura</td>
<td>Limite escoamento</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6,28</td>
<td>4,21</td>
<td>67,0</td>
<td>13,92</td>
<td>9,66</td>
<td>6,97</td>
</tr>
<tr>
<td>2</td>
<td>6,34</td>
<td>4,21</td>
<td>66,4</td>
<td>13,92</td>
<td>9,32</td>
<td>6,97</td>
</tr>
<tr>
<td>3</td>
<td>6,28</td>
<td>4,21</td>
<td>67,0</td>
<td>13,92</td>
<td>9,03</td>
<td>7,36</td>
</tr>
<tr>
<td>4</td>
<td>6,36</td>
<td>4,21</td>
<td>66,2</td>
<td>13,92</td>
<td>8,54</td>
<td>6,57</td>
</tr>
<tr>
<td>5</td>
<td>6,28</td>
<td>4,26</td>
<td>67,8</td>
<td>14,25</td>
<td>9,32</td>
<td>7,16</td>
</tr>
<tr>
<td>6</td>
<td>6,36</td>
<td>4,19</td>
<td>65,9</td>
<td>13,79</td>
<td>8,83</td>
<td>6,67</td>
</tr>
<tr>
<td>Média</td>
<td>6,32</td>
<td>4,22</td>
<td>266,7</td>
<td>-</td>
<td>9,12</td>
<td>6,95</td>
</tr>
</tbody>
</table>

¹ - Média de três medições

² - Diâm. rosca = 2/3 Diâm. fuste

Quadro 11 - Ensaio de tração em parafusos auto-atarrazantes 1/4" x 60mm
<table>
<thead>
<tr>
<th>Peça</th>
<th>Madeira - Peroba Rosa</th>
<th>Madeira Compensada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resistência à compressão paralela (MPa)</td>
<td>Densidade (g/cm³)</td>
</tr>
<tr>
<td>1</td>
<td>663</td>
<td>0,77</td>
</tr>
<tr>
<td>2</td>
<td>652</td>
<td>0,77</td>
</tr>
<tr>
<td>3</td>
<td>675</td>
<td>0,78</td>
</tr>
<tr>
<td>4</td>
<td>683</td>
<td>0,77</td>
</tr>
<tr>
<td>5</td>
<td>682</td>
<td>0,77</td>
</tr>
<tr>
<td>6</td>
<td>671</td>
<td>0,78</td>
</tr>
<tr>
<td>Média</td>
<td>671</td>
<td>0,77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fibra paralela ao comprimento</th>
<th>Fibra de face paralela ao comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>507</td>
</tr>
<tr>
<td>8</td>
<td>453</td>
</tr>
<tr>
<td>9</td>
<td>502</td>
</tr>
<tr>
<td>10</td>
<td>472</td>
</tr>
<tr>
<td>11</td>
<td>465</td>
</tr>
<tr>
<td>12</td>
<td>453</td>
</tr>
<tr>
<td>Média</td>
<td>477</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fibra paralela ao comprimento</th>
<th>Fibra de face perpend. ao comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>325</td>
</tr>
<tr>
<td>8</td>
<td>396</td>
</tr>
<tr>
<td>9</td>
<td>432</td>
</tr>
<tr>
<td>10</td>
<td>435</td>
</tr>
<tr>
<td>11</td>
<td>401</td>
</tr>
<tr>
<td>12</td>
<td>366</td>
</tr>
<tr>
<td>Média</td>
<td>393</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fibra perpendiculares ao comprimento</th>
<th>Fibra de face paralela ao comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>402</td>
</tr>
<tr>
<td>14</td>
<td>452</td>
</tr>
<tr>
<td>15</td>
<td>415</td>
</tr>
<tr>
<td>16</td>
<td>378</td>
</tr>
<tr>
<td>17</td>
<td>383</td>
</tr>
<tr>
<td>18</td>
<td>373</td>
</tr>
<tr>
<td>Média</td>
<td>401</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fibra paralela ao comprimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>23</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>Média</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Média</th>
<th>564</th>
<th>0,78</th>
<th>10,6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>446</td>
<td>0,60</td>
<td>7,5</td>
</tr>
</tbody>
</table>

1 - Baseada em peso e volume secos em estufa

Quadro 12 - Umidade, densidade e resistência à compressão paralela às fibras da Peroba Rosa e madeira compensada, usadas nos ensaios com parafusos auto-atacantes.
<table>
<thead>
<tr>
<th>Corpo de Prova (bloco)</th>
<th>Carga de ruptura da ligação (KN)</th>
<th>Diâmetro da raiz da rosca (mm)</th>
<th>Área Ótima (mm²)</th>
<th>Tensão (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PARAFUSO</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Cravação Inclinada</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9,53</td>
<td>4,23</td>
<td>14,05</td>
<td>678</td>
</tr>
<tr>
<td>2</td>
<td>9,94</td>
<td>4,22</td>
<td>13,99</td>
<td>710</td>
</tr>
<tr>
<td>3</td>
<td>9,73</td>
<td>4,21</td>
<td>13,92</td>
<td>699</td>
</tr>
<tr>
<td>4</td>
<td>9,96</td>
<td>4,22</td>
<td>13,99</td>
<td>712</td>
</tr>
<tr>
<td>5</td>
<td>9,40</td>
<td>4,25</td>
<td>14,19</td>
<td>662</td>
</tr>
<tr>
<td>6</td>
<td>9,68</td>
<td>4,25</td>
<td>14,19</td>
<td>682</td>
</tr>
<tr>
<td>Média</td>
<td>9,71</td>
<td>-</td>
<td>-</td>
<td>691</td>
</tr>
<tr>
<td><strong>Cravação Radial</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9,94</td>
<td>4,24</td>
<td>14,12</td>
<td>704</td>
</tr>
<tr>
<td>8</td>
<td>10,14</td>
<td>4,25</td>
<td>14,19</td>
<td>715</td>
</tr>
<tr>
<td>9</td>
<td>9,16</td>
<td>4,21</td>
<td>13,92</td>
<td>658</td>
</tr>
<tr>
<td>10</td>
<td>9,66</td>
<td>4,22</td>
<td>13,99</td>
<td>690</td>
</tr>
<tr>
<td>11</td>
<td>9,17</td>
<td>4,21</td>
<td>13,92</td>
<td>659</td>
</tr>
<tr>
<td>12</td>
<td>9,44</td>
<td>4,23</td>
<td>14,05</td>
<td>672</td>
</tr>
<tr>
<td>Média</td>
<td>9,59</td>
<td>-</td>
<td>-</td>
<td>683</td>
</tr>
<tr>
<td><strong>Cravação Tangencial</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>9,36</td>
<td>4,23</td>
<td>14,05</td>
<td>666</td>
</tr>
<tr>
<td>20</td>
<td>9,45</td>
<td>4,22</td>
<td>13,99</td>
<td>675</td>
</tr>
<tr>
<td>21</td>
<td>9,61</td>
<td>4,22</td>
<td>13,99</td>
<td>687</td>
</tr>
<tr>
<td>22</td>
<td>9,47</td>
<td>4,21</td>
<td>13,92</td>
<td>680</td>
</tr>
<tr>
<td>23</td>
<td>9,94</td>
<td>4,23</td>
<td>14,05</td>
<td>707</td>
</tr>
<tr>
<td>24</td>
<td>9,52</td>
<td>4,19</td>
<td>13,79</td>
<td>691</td>
</tr>
<tr>
<td>Média</td>
<td>9,56</td>
<td>-</td>
<td>-</td>
<td>684</td>
</tr>
</tbody>
</table>

1- Numeração em função do Quadro 2
2- Baseada na penetração de toda a parte rosqueada do parafuso no bloco

Quadro 13- Ensaio de arrancamento direto de parafuso auto atarraxante (1/4" x 60mm) em Peroba Rosa
<table>
<thead>
<tr>
<th>Corpo de Prova</th>
<th>BLOCO E COBREJUNTA</th>
<th>CARGA - KN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resistência à comp.</td>
<td>Limite Proporcional</td>
</tr>
<tr>
<td></td>
<td>paral. MPa</td>
<td>Proporcional Teste</td>
</tr>
<tr>
<td></td>
<td>Densidade</td>
<td>%</td>
</tr>
<tr>
<td>Carregamento Tipo A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>585 0,69 9,1</td>
<td>2,34 2,73</td>
</tr>
<tr>
<td>2</td>
<td>558 0,69 9,2</td>
<td>2,65 2,71</td>
</tr>
<tr>
<td>3</td>
<td>589 0,69 9,3</td>
<td>3,26 3,02</td>
</tr>
<tr>
<td>4</td>
<td>578 0,69 9,1</td>
<td>3,19 2,99</td>
</tr>
<tr>
<td>5</td>
<td>574 0,67 9,3</td>
<td>2,94 2,83</td>
</tr>
<tr>
<td>6</td>
<td>562 0,69 9,4</td>
<td>2,96 2,82</td>
</tr>
<tr>
<td>Média</td>
<td>574 0,69 9,2</td>
<td>3,02 2,85</td>
</tr>
<tr>
<td>Carregamento Tipo B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>475 0,66 9,0</td>
<td>2,45 2,62</td>
</tr>
<tr>
<td>8</td>
<td>516 0,69 9,0</td>
<td>2,75 2,72</td>
</tr>
<tr>
<td>9</td>
<td>525 0,69 9,2</td>
<td>2,86 2,52</td>
</tr>
<tr>
<td>10</td>
<td>522 0,70 9,1</td>
<td>2,55 2,50</td>
</tr>
<tr>
<td>11</td>
<td>523 0,69 9,1</td>
<td>2,99 2,96</td>
</tr>
<tr>
<td>12</td>
<td>482 0,67 9,2</td>
<td>2,94 3,02</td>
</tr>
<tr>
<td>Média</td>
<td>507 0,68 9,1</td>
<td>2,76 2,72</td>
</tr>
<tr>
<td>Carregamento Tipo C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>433 0,72 9,0</td>
<td>2,67 2,81</td>
</tr>
<tr>
<td>14</td>
<td>459 0,69 8,8</td>
<td>2,65 2,79</td>
</tr>
<tr>
<td>15</td>
<td>446 0,71 8,9</td>
<td>2,34 2,45</td>
</tr>
<tr>
<td>16</td>
<td>403 0,71 8,6</td>
<td>2,35 2,60</td>
</tr>
<tr>
<td>17</td>
<td>425 0,70 8,9</td>
<td>2,55 2,75</td>
</tr>
<tr>
<td>18</td>
<td>441 0,73 9,0</td>
<td>2,35 2,42</td>
</tr>
<tr>
<td>Média</td>
<td>435 0,71 8,9</td>
<td>2,49 2,64</td>
</tr>
<tr>
<td>Médiá</td>
<td>505 0,69 9,1</td>
<td>2,76 2,74</td>
</tr>
</tbody>
</table>

1.- Numeração em função do Quadro 2 
2.- Baseada em peço e volume secos em estufa 
3.- Ajuste em função da densidade e da resistência à compressão paralela às fibras 
4.- Relativa a uma penetração da parte rosqueada do parafuso no bloco de 6 diâmetros

Quadro 14 - Ensaio de resistência lateral de ligações com cobre junta de madeira compensada e bloco de Peroba Rosa, através de parafuso auto-atarraxante (1/4" x 60mm).
Comparação entre os valores médios da carga limite proporcional nos três tipos de ensaios realizados - Análise de Variância -

Modelo: \( Y_{ti} = \mu + \delta_t + \epsilon_{ti} \)

\( \delta_t \) = efeito de tratamento

<table>
<thead>
<tr>
<th>Causa</th>
<th>Soma de quadrados</th>
<th>Graus de liberd.</th>
<th>Quadrado Médio</th>
<th>F</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre</td>
<td>1.050.844,80</td>
<td>2</td>
<td>525.422,40</td>
<td>3,65</td>
<td>A hipótese nula ( \delta_t = 0 ) é rejeitada para o nível ( \alpha \geq 5% )</td>
</tr>
<tr>
<td>Dentro</td>
<td>2.162.406,20</td>
<td>15</td>
<td>1.441.160,41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.213.251,00</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comparação entre os valores médios da carga limite proporcional nos testes com carregamentos A e B - Análise de Variância -

Modelo: \( Y_{ti} = \mu + \delta_t + \epsilon_{ti} \)

\( \delta_t \) = efeito de tratamento

<table>
<thead>
<tr>
<th>Causa</th>
<th>Soma de quadrados</th>
<th>Graus de liberd.</th>
<th>Quadrado Médio</th>
<th>F</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre</td>
<td>62.042,51</td>
<td>1</td>
<td>62.042,51</td>
<td>0,83</td>
<td>A hipótese nula ( \delta_t = 0 ) é rejeitada para o nível ( \alpha &gt; 25% )</td>
</tr>
<tr>
<td>Dentro</td>
<td>742.471,57</td>
<td>10</td>
<td>74.247,16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>804.514,08</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quadro 15- Comparação entre os ensaios de esforço lateral em ligações com parafusos auto-arraxantes.
<table>
<thead>
<tr>
<th></th>
<th>CARREGAMENTO PARALELO ÀS FIBRAS DO BLOCO</th>
<th>CARREGAMENTO PERPENDICULAR ÀS FIBRAS DO BLOCO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20% Ruptura KN</td>
<td>50% Lim. Proporc. KN</td>
</tr>
<tr>
<td></td>
<td>1,43 KN</td>
<td>1,39 KN</td>
</tr>
</tbody>
</table>

1- Média dos valores correspondentes aos carregamentos tipo A e B
2- Valores correspondentes ao carregamento tipo C

Quadro 16- Cargas admissíveis de projeto segundo a NBR-7190/82 a partir dos resultados de ensaios para esforços laterais em ligações com parafusos auto-atarraxantes entre chapas compensadas e peças de Peroba Rosa.
ANEXO 3

Sobre as soluções das placas de compensado, consideradas como planas e ortotrópicas, através do programa de análise estrutural SAP-4, (BATHE et al., 1974).

Como constantes elásticas dos compensados utilizou-se os valores experimentais determinados pelo autor e expostos neste trabalho no capítulo 5:

\[
\begin{bmatrix}
\sigma_x \\
\sigma_y \\
\tau_{xy}
\end{bmatrix} = \begin{bmatrix} 8730 & 402 & 0 \\ 402 & 5520 & 0 \\ 0 & 0 & 1050 \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix} \text{ MPa}
\]
Q + carga distribuída, KN/m²
l_x + dimensão da placa na direção das fibras de face do compensado
l_y + dimensão da placa na direção normal às fibras de face do compensado
ε = \( \frac{l_y}{l_x} \)

Momentos - \( m_x = \mu_x \cdot Q \cdot l_x^2 \); \( m_y = \mu_y \cdot Q \cdot l_x^2 \)
\( m_{xy} = \mu_{xy} \cdot Q \cdot l_x^2 \)

Deslocamentos - \( \omega = 10^6 \cdot \delta \cdot Q \cdot l_x^4 \) (mm)

<table>
<thead>
<tr>
<th>POSIÇÃO</th>
<th>ε</th>
<th>0,5</th>
<th>1,0</th>
<th>1,5</th>
<th>2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro do vão</td>
<td>( \mu_x )</td>
<td>0,909 \times 10^{-2}</td>
<td>0,651 \times 10^{-1}</td>
<td>0,105 \times 10^0</td>
<td>0,120 \times 10^6</td>
</tr>
<tr>
<td></td>
<td>( \mu_y )</td>
<td>0,224 \times 10^{-1}</td>
<td>0,414 \times 10^{-1}</td>
<td>0,286 \times 10^{-1}</td>
<td>0,169 \times 10^{-1}</td>
</tr>
<tr>
<td></td>
<td>( \delta )</td>
<td>0,200 \times 10^{-6}</td>
<td>0,146 \times 10^{-5}</td>
<td>0,241 \times 10^{-5}</td>
<td>0,276 \times 10^{-5}</td>
</tr>
<tr>
<td>Máximo</td>
<td>( \mu_x )</td>
<td>0,936 \times 10^{-2}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>( \mu_y )</td>
<td>-</td>
<td>-</td>
<td>0,294 \times 10^{-1}</td>
<td>0,240 \times 10^{-1}</td>
</tr>
<tr>
<td></td>
<td>( \delta )</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Canto</td>
<td>( \mu_{xy} )</td>
<td>0,483 \times 10^{-2}</td>
<td>0,161 \times 10^{-1}</td>
<td>0,189 \times 10^{-1}</td>
<td>0,186 \times 10^{-1}</td>
</tr>
</tbody>
</table>

Quinhões de carga -
\( K_x = v_x \cdot Q \cdot l_x^2 \)
\( K_y = v_y \cdot Q \cdot l_x^2 \)

<table>
<thead>
<tr>
<th>ε</th>
<th>0,5</th>
<th>1,0</th>
<th>1,5</th>
<th>2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>( v_x )</td>
<td>0,375</td>
<td>0,250</td>
<td>0,250</td>
<td>0,250</td>
</tr>
<tr>
<td>( v_y )</td>
<td>0,063</td>
<td>0,250</td>
<td>0,500</td>
<td>0,750</td>
</tr>
</tbody>
</table>

Quadro 1 - Placa retangular simplesmente apoiada.
q \rightarrow \text{carga distribuída, KN/m}^2
l_x \rightarrow \text{dimensão da placa na direção das fibras de face do compensado}
l_y \rightarrow \text{dimensão da placa na direção normal às fibras de face do compensado}
\varepsilon = \frac{l_y}{l_x}

\text{Momentos} - \begin{align*}
M_x &= \nu_x \cdot q \cdot l_x^2 \quad M_y = \nu_y \cdot q \cdot l_x^2 \\
M_{xx} &= -\nu_x \cdot q \cdot l_x^2 \quad M_{xy} = \pm \nu_{xy} \cdot q \cdot l_x^2
\end{align*}

\text{Deslocamentos} - \omega = 10^6 \cdot \delta \cdot q \cdot l_x^4 \text{ (mm)}

<table>
<thead>
<tr>
<th>POSIÇÃO</th>
<th>\varepsilon</th>
<th>0,5</th>
<th>1,0</th>
<th>1,5</th>
<th>2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro do vão</td>
<td>\nu_x</td>
<td>0,909 \times 10^{-2}</td>
<td>0,468 \times 10^{-1}</td>
<td>0,607 \times 10^{-1}</td>
<td>0,626 \times 10^{-1}</td>
</tr>
<tr>
<td></td>
<td>\nu_y</td>
<td>0,214 \times 10^{-1}</td>
<td>0,232 \times 10^{-1}</td>
<td>0,115 \times 10^{-1}</td>
<td>0,542 \times 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>\delta</td>
<td>0,176 \times 10^{-6}</td>
<td>0,833 \times 10^{-6}</td>
<td>0,111 \times 10^{-5}</td>
<td>0,115 \times 10^{-5}</td>
</tr>
<tr>
<td>Máximo</td>
<td>\nu_x</td>
<td>0,103 \times 10^{-1}</td>
<td>0,486 \times 10^{-1}</td>
<td>0,640 \times 10^{-1}</td>
<td>0,666 \times 10^{-1}</td>
</tr>
<tr>
<td></td>
<td>\nu_y</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>\delta</td>
<td>0,186 \times 10^{-6}</td>
<td>0,910 \times 10^{-6}</td>
<td>0,121 \times 10^{-5}</td>
<td>0,127 \times 10^{-5}</td>
</tr>
<tr>
<td>Apoio</td>
<td>\nu_x</td>
<td>0,116 \times 10^{-1}</td>
<td>0,528 \times 10^{-1}</td>
<td>0,685 \times 10^{-1}</td>
<td>0,709 \times 10^{-1}</td>
</tr>
<tr>
<td>Canto</td>
<td>\nu_{xy}</td>
<td>0,471 \times 10^{-2}</td>
<td>0,114 \times 10^{-1}</td>
<td>0,116 \times 10^{-1}</td>
<td>0,111 \times 10^{-1}</td>
</tr>
</tbody>
</table>

\text{Quinhões de carga} - 

\begin{align*}
K_x &= \nu_x \cdot q \cdot l_x^2 \\
K_y &= \nu_y \cdot q \cdot l_x^2 \\
K_{xy} &= \nu_{xy} \cdot q \cdot l_x^2
\end{align*}

<table>
<thead>
<tr>
<th>\varepsilon</th>
<th>0,5</th>
<th>1,0</th>
<th>1,5</th>
<th>2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_x</td>
<td>0,164</td>
<td>0,167</td>
<td>0,183</td>
<td>0,184</td>
</tr>
<tr>
<td>V_y</td>
<td>0,063</td>
<td>0,244</td>
<td>0,416</td>
<td>0,598</td>
</tr>
<tr>
<td>V_{xy}</td>
<td>0,109</td>
<td>0,422</td>
<td>0,718</td>
<td>1,034</td>
</tr>
</tbody>
</table>

\text{Quadro 2 - Placa retangular engastada em um lado.}
Q → Carga distribuída, KN/m²

lₓ → Dimensão da placa na direção das fibras de face do compensado

lᵧ → Dimensão da placa na direção normal às fibras de face do compensado

c = lᵧ / lₓ

Momentos -

\[ M_x = \nu_x \cdot Q \cdot l_x^2 \]
\[ M_y = \nu_y \cdot Q \cdot l_x^2 \]
\[ M_{xe} = -\nu_{xe} \cdot Q \cdot l_x^2 \]

Deslocamento -

\[ \omega = 10^6 \cdot \delta \cdot Q \cdot l_x^4 \] (mm)

<table>
<thead>
<tr>
<th>POSIÇÃO</th>
<th>c</th>
<th>0,5</th>
<th>1,0</th>
<th>1,5</th>
<th>2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro do vão</td>
<td>( \nu_x )</td>
<td>0,107 \times 10^{-1}</td>
<td>0,369 \times 10^{-1}</td>
<td>0,422 \times 10^{-1}</td>
<td>0,417 \times 10^{-1}</td>
</tr>
<tr>
<td></td>
<td>( \nu_y )</td>
<td>0,186 \times 10^{-1}</td>
<td>0,134 \times 10^{-1}</td>
<td>0,491 \times 10^{-2}</td>
<td>0,211 \times 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>( \delta )</td>
<td>0,152 \times 10^{-4}</td>
<td>0,495 \times 10^{-6}</td>
<td>0,574 \times 10^{-6}</td>
<td>0,571 \times 10^{-6}</td>
</tr>
<tr>
<td>Máximo</td>
<td>( \nu_x )</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>( \nu_y )</td>
<td>-</td>
<td>0,135 \times 10^{-1}</td>
<td>0,106 \times 10^{-1}</td>
<td>0,861 \times 10^{-2}</td>
</tr>
<tr>
<td></td>
<td>( \delta )</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Apoio</td>
<td>( \nu_{xe} )</td>
<td>0,109 \times 10^{-1}</td>
<td>0,366 \times 10^{-1}</td>
<td>0,419 \times 10^{-1}</td>
<td>0,415 \times 10^{-1}</td>
</tr>
</tbody>
</table>

Quinhões de carga -

\[ K_x = \nu_x \cdot Q \cdot l_x^2 \]
\[ K_y = \nu_y \cdot Q \cdot l_x^2 \]

<table>
<thead>
<tr>
<th>ε</th>
<th>0,5</th>
<th>1,0</th>
<th>1,5</th>
<th>2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \nu_x )</td>
<td>0,141</td>
<td>0,144</td>
<td>0,144</td>
<td>0,144</td>
</tr>
<tr>
<td>( \nu_y )</td>
<td>0,109</td>
<td>0,356</td>
<td>0,606</td>
<td>0,856</td>
</tr>
</tbody>
</table>

Quadro 3 - Placas retangulares engastadas em dois lados opostos.
\[ Q \rightarrow \text{carga distribuída, KN/m}^2 \]
\[ l_x \rightarrow \text{dimensão da placa na direção das fibras de face do compensado} \]
\[ l_y \rightarrow \text{dimensão da placa na direção normal às fibras de face do compensado} \]
\[ \varepsilon = \frac{l_x}{l_y} \]

**Momentos**
- \( m_x = \mu_x \cdot Q \cdot l_x^2 \)
- \( m_y = \mu_y \cdot Q \cdot l_x^2 \)
- \( m_{x0} = \mu_{x0} \cdot Q \cdot l_x^2 \)
- \( m_{xy} = \mu_{xy} \cdot Q \cdot l_x^2 \)

**Deslocamentos**
- \( \omega = 10^6 \cdot q \cdot l_x^4 \) (mm)

<table>
<thead>
<tr>
<th>POSIÇÃO</th>
<th>0,5</th>
<th>0,6</th>
<th>0,7</th>
<th>0,8</th>
<th>0,9</th>
<th>1,0</th>
<th>1,5</th>
<th>2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Centro do vão</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \mu_x )</td>
<td>0,318x10^{-4}</td>
<td>0,539x10^{-4}</td>
<td>0,832x10^{-4}</td>
<td>0,120x10^{-3}</td>
<td>0,149x10^{-3}</td>
<td>0,177x10^{-3}</td>
<td>0,202x10^{-3}</td>
<td>0,221x10^{-3}</td>
</tr>
<tr>
<td>( \mu_y )</td>
<td>0,318x10^{-2}</td>
<td>0,399x10^{-2}</td>
<td>0,315x10^{-2}</td>
<td>0,123x10^{-2}</td>
<td>0,139x10^{-2}</td>
<td>0,156x10^{-2}</td>
<td>0,173x10^{-2}</td>
<td>0,190x10^{-2}</td>
</tr>
<tr>
<td>( \delta )</td>
<td>0,192x10^{-2}</td>
<td>0,460x10^{-2}</td>
<td>0,728x10^{-2}</td>
<td>0,103x10^{-1}</td>
<td>0,129x10^{-1}</td>
<td>0,156x10^{-1}</td>
<td>0,183x10^{-1}</td>
<td>0,209x10^{-1}</td>
</tr>
<tr>
<td><strong>Máximo</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \mu_x )</td>
<td>0,433x10^{-2}</td>
<td>0,615x10^{-2}</td>
<td>0,772x10^{-2}</td>
<td>0,927x10^{-2}</td>
<td>0,109x10^{-1}</td>
<td>0,125x10^{-1}</td>
<td>0,143x10^{-1}</td>
<td>0,160x10^{-1}</td>
</tr>
<tr>
<td>( \mu_y )</td>
<td>-</td>
<td>0,101x10^{-2}</td>
<td>0,123x10^{-2}</td>
<td>0,145x10^{-2}</td>
<td>0,167x10^{-2}</td>
<td>0,189x10^{-2}</td>
<td>0,212x10^{-2}</td>
<td>0,234x10^{-2}</td>
</tr>
<tr>
<td>( \delta )</td>
<td>0,367x10^{-2}</td>
<td>0,564x10^{-2}</td>
<td>0,642x10^{-2}</td>
<td>0,714x10^{-2}</td>
<td>0,785x10^{-2}</td>
<td>0,858x10^{-2}</td>
<td>0,929x10^{-2}</td>
<td>0,997x10^{-2}</td>
</tr>
<tr>
<td><strong>Vértice</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \mu_{x0} )</td>
<td>0,227x10^{-2}</td>
<td>0,352x10^{-2}</td>
<td>0,492x10^{-2}</td>
<td>0,633x10^{-2}</td>
<td>0,774x10^{-2}</td>
<td>0,916x10^{-2}</td>
<td>0,106x10^{-1}</td>
<td>0,121x10^{-1}</td>
</tr>
<tr>
<td>( \mu_{xy} )</td>
<td>0,191x10^{-2}</td>
<td>0,243x10^{-2}</td>
<td>0,286x10^{-2}</td>
<td>0,328x10^{-2}</td>
<td>0,371x10^{-2}</td>
<td>0,415x10^{-2}</td>
<td>0,458x10^{-2}</td>
<td>0,500x10^{-2}</td>
</tr>
</tbody>
</table>

**Quinhões de carga**

\[ K_x = \nu_x \cdot Q \cdot l_x^2 \]

\[ K_y = \nu_y \cdot Q \cdot l_x^2 \]

<table>
<thead>
<tr>
<th>( \varepsilon )</th>
<th>0,5</th>
<th>0,6</th>
<th>0,7</th>
<th>0,8</th>
<th>0,9</th>
<th>1,0</th>
<th>1,5</th>
<th>2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>( V_x )</td>
<td>0,100</td>
<td>0,177</td>
<td>0,132</td>
<td>0,146</td>
<td>0,160</td>
<td>0,173</td>
<td>0,235</td>
<td>0,293</td>
</tr>
<tr>
<td>( V_y )</td>
<td>0,050</td>
<td>0,066</td>
<td>0,086</td>
<td>0,108</td>
<td>0,130</td>
<td>0,154</td>
<td>0,280</td>
<td>0,414</td>
</tr>
</tbody>
</table>

**Quadro 4 - Placa triangular simplesmente apoiada.**
q → carga distribuída, KN/m²

l_{x} → dimensão da placa na direção das fibras de face do compensado

l_{y} → dimensão da placa na direção normal às fibras de face do compensado

\varepsilon = l_{y}/l_{x}

Momentos – m_{x} = \varepsilon_{x} \cdot q \cdot l_{x}^{2} ; m_{y} = \varepsilon_{y} \cdot q \cdot l_{x}^{2}

m_{x0} = -\varepsilon_{x0} \cdot q \cdot l_{x}^{2}

Deslocamentos – \omega = 10^{6} \cdot \varepsilon \cdot q \cdot l_{x}^{4} (mm)

<table>
<thead>
<tr>
<th>POSIÇÃO</th>
<th>\varepsilon</th>
<th>0,5</th>
<th>0,6</th>
<th>0,7</th>
<th>0,8</th>
<th>0,9</th>
<th>1,0</th>
<th>1,5</th>
<th>2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro do vão</td>
<td>\varepsilon_{x}</td>
<td>0,329 \times 10^{-3}</td>
<td>0,649 \times 10^{-3}</td>
<td>0,712 \times 10^{-3}</td>
<td>0,922 \times 10^{-3}</td>
<td>1,075 \times 10^{-3}</td>
<td>1,119 \times 10^{-3}</td>
<td>1,174 \times 10^{-3}</td>
<td>1,206 \times 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>\varepsilon_{y}</td>
<td>0,966 \times 10^{-3}</td>
<td>0,720 \times 10^{-3}</td>
<td>0,805 \times 10^{-3}</td>
<td>0,865 \times 10^{-3}</td>
<td>0,817 \times 10^{-3}</td>
<td>0,782 \times 10^{-3}</td>
<td>0,709 \times 10^{-3}</td>
<td>0,633 \times 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>\varepsilon_{z}</td>
<td>0,214 \times 10^{-3}</td>
<td>0,316 \times 10^{-3}</td>
<td>0,465 \times 10^{-3}</td>
<td>0,618 \times 10^{-3}</td>
<td>0,727 \times 10^{-3}</td>
<td>0,837 \times 10^{-3}</td>
<td>0,948 \times 10^{-3}</td>
<td>0,199 \times 10^{-3}</td>
</tr>
<tr>
<td>Máximo</td>
<td>\varepsilon_{x}</td>
<td>0,711 \times 10^{-3}</td>
<td>0,861 \times 10^{-3}</td>
<td>0,990 \times 10^{-3}</td>
<td>0,106 \times 10^{-3}</td>
<td>0,105 \times 10^{-3}</td>
<td>0,102 \times 10^{-3}</td>
<td>0,121 \times 10^{-3}</td>
<td>0,124 \times 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>\varepsilon_{y}</td>
<td>0,280 \times 10^{-3}</td>
<td>0,337 \times 10^{-3}</td>
<td>0,477 \times 10^{-3}</td>
<td>0,665 \times 10^{-3}</td>
<td>0,805 \times 10^{-3}</td>
<td>0,950 \times 10^{-3}</td>
<td>1,079 \times 10^{-3}</td>
<td>1,248 \times 10^{-3}</td>
</tr>
<tr>
<td></td>
<td>\varepsilon_{z}</td>
<td>0,241 \times 10^{-3}</td>
<td>0,404 \times 10^{-3}</td>
<td>0,595 \times 10^{-3}</td>
<td>0,738 \times 10^{-3}</td>
<td>0,840 \times 10^{-3}</td>
<td>0,112 \times 10^{-3}</td>
<td>0,136 \times 10^{-3}</td>
<td>0,200 \times 10^{-3}</td>
</tr>
<tr>
<td>Apoio</td>
<td>\varepsilon_{y0}</td>
<td>0,158 \times 10^{-3}</td>
<td>0,233 \times 10^{-3}</td>
<td>0,387 \times 10^{-3}</td>
<td>0,529 \times 10^{-3}</td>
<td>0,660 \times 10^{-3}</td>
<td>0,786 \times 10^{-3}</td>
<td>0,143 \times 10^{-3}</td>
<td>0,191 \times 10^{-3}</td>
</tr>
</tbody>
</table>

Quinhões de carga –

K_{x} = V_{x} \cdot q \cdot l_{x}^{2}

K_{y} = V_{y} \cdot q \cdot l_{x}^{2}

<table>
<thead>
<tr>
<th>\varepsilon</th>
<th>0,5</th>
<th>0,6</th>
<th>0,7</th>
<th>0,8</th>
<th>0,9</th>
<th>1,0</th>
<th>1,5</th>
<th>2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{x}</td>
<td>0,087</td>
<td>0,099</td>
<td>0,109</td>
<td>0,119</td>
<td>0,126</td>
<td>0,137</td>
<td>0,175</td>
<td>0,212</td>
</tr>
<tr>
<td>V_{y}</td>
<td>0,076</td>
<td>0,102</td>
<td>0,133</td>
<td>0,162</td>
<td>0,198</td>
<td>0,226</td>
<td>0,400</td>
<td>0,576</td>
</tr>
</tbody>
</table>

Quadro 5 – Placa triangular engastada na base.
Carga distribuída, KN/m²

$q$ = dimensão da placa na direção das fibras de face do composto

$l_x$ = dimensão da placa na direção normal às fibras de face do composto

$\varepsilon = \frac{l_y}{l_x}$

Momentos - $m_x = \mu_x \cdot q \cdot l_x^2$; $m_y = \mu_y \cdot q \cdot l_x^2$

$m_{x_e} = \mu_{x_e} \cdot q \cdot l_x^2$; $m_{y_e} = \mu_{y_e} \cdot q \cdot l_x^2$

$m_{x_o} = \mu_{x_o} \cdot q \cdot l_x^2$

Deslocamentos - $\omega = 10^6 \cdot \delta \cdot q \cdot l_x^4$ (mm)

<table>
<thead>
<tr>
<th>POSIÇÃO</th>
<th>$\varepsilon$</th>
<th>0,5</th>
<th>0,6</th>
<th>0,7</th>
<th>0,8</th>
<th>0,9</th>
<th>1,0</th>
<th>1,5</th>
<th>2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro do vão</td>
<td>$\mu_x$</td>
<td>0,616x10^-7</td>
<td>0,126x10^-7</td>
<td>0,273x10^-7</td>
<td>0,361x10^-7</td>
<td>0,453x10^-7</td>
<td>0,559x10^-7</td>
<td>0,102x10^-7</td>
<td>0,136x10^-7</td>
</tr>
<tr>
<td></td>
<td>$\mu_y$</td>
<td>0,286x10^-7</td>
<td>0,296x10^-7</td>
<td>0,365x10^-7</td>
<td>0,432x10^-7</td>
<td>0,419x10^-7</td>
<td>0,406x10^-7</td>
<td>0,455x10^-7</td>
<td>0,419x10^-7</td>
</tr>
<tr>
<td></td>
<td>$\mu_{x_e}$</td>
<td>0,562x10^-7</td>
<td>0,078x10^-7</td>
<td>0,138x10^-7</td>
<td>0,196x10^-7</td>
<td>0,237x10^-7</td>
<td>0,274x10^-7</td>
<td>0,377x10^-7</td>
<td>0,837x10^-7</td>
</tr>
<tr>
<td>Dáxico</td>
<td>$\mu_x$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>$\mu_y$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,448x10^-7</td>
<td>0,471x10^-7</td>
<td>0,479x10^-7</td>
<td>0,509x10^-7</td>
<td>0,434x10^-7</td>
</tr>
<tr>
<td></td>
<td>$\mu_{x_e}$</td>
<td>0,865x10^-7</td>
<td>0,127x10^-7</td>
<td>0,188x10^-7</td>
<td>0,249x10^-7</td>
<td>0,289x10^-7</td>
<td>0,327x10^-7</td>
<td>0,583x10^-7</td>
<td>0,916x10^-7</td>
</tr>
<tr>
<td>Apoio</td>
<td>$\mu_{x_e}$</td>
<td>0,360x10^-7</td>
<td>0,662x10^-7</td>
<td>0,115x10^-7</td>
<td>0,169x10^-7</td>
<td>0,214x10^-7</td>
<td>0,255x10^-7</td>
<td>0,522x10^-7</td>
<td>0,812x10^-7</td>
</tr>
<tr>
<td></td>
<td>$\mu_{y_e}$</td>
<td>0,211x10^-7</td>
<td>0,272x10^-7</td>
<td>0,307x10^-7</td>
<td>0,343x10^-7</td>
<td>0,414x10^-7</td>
<td>0,468x10^-7</td>
<td>0,649x10^-7</td>
<td>0,553x10^-7</td>
</tr>
<tr>
<td>Vértice</td>
<td>$\mu_{x_o}$</td>
<td>0,394x10^-7</td>
<td>0,719x10^-7</td>
<td>0,135x10^-7</td>
<td>0,241x10^-7</td>
<td>0,358x10^-7</td>
<td>0,436x10^-7</td>
<td>0,113x10^-7</td>
<td>0,133x10^-7</td>
</tr>
</tbody>
</table>

Quinhões de carga -

$K_x = \mu_x \cdot q \cdot l_x^2$

$K_y = \mu_y \cdot q \cdot l_x^2$

<table>
<thead>
<tr>
<th>$\varepsilon$</th>
<th>0,5</th>
<th>0,6</th>
<th>0,7</th>
<th>0,8</th>
<th>0,9</th>
<th>1,0</th>
<th>1,5</th>
<th>2,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_x$</td>
<td>0,100</td>
<td>0,177</td>
<td>0,132</td>
<td>0,146</td>
<td>0,160</td>
<td>0,173</td>
<td>0,235</td>
<td>0,293</td>
</tr>
<tr>
<td>$V_y$</td>
<td>0,050</td>
<td>0,066</td>
<td>0,086</td>
<td>0,108</td>
<td>0,130</td>
<td>0,154</td>
<td>0,280</td>
<td>0,414</td>
</tr>
</tbody>
</table>

Quadro 6 - Placa triangular engastada.
Sobre os resultados experimentais dos ensaios realizados no modelo da tremonha do silo.
<table>
<thead>
<tr>
<th>CARGA (KN)</th>
<th>DEFORMAÇÃO ESPECÍFICA (X 10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
</tr>
<tr>
<td>17</td>
<td>0.0</td>
</tr>
<tr>
<td>18</td>
<td>0.0</td>
</tr>
<tr>
<td>19</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>0.0</td>
</tr>
<tr>
<td>21</td>
<td>0.0</td>
</tr>
<tr>
<td>22</td>
<td>0.0</td>
</tr>
<tr>
<td>23</td>
<td>0.0</td>
</tr>
<tr>
<td>24</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>0.0</td>
</tr>
<tr>
<td>27</td>
<td>0.0</td>
</tr>
<tr>
<td>28</td>
<td>0.0</td>
</tr>
<tr>
<td>29</td>
<td>0.0</td>
</tr>
<tr>
<td>30</td>
<td>0.0</td>
</tr>
<tr>
<td>31</td>
<td>0.0</td>
</tr>
<tr>
<td>32</td>
<td>0.0</td>
</tr>
<tr>
<td>33</td>
<td>0.0</td>
</tr>
<tr>
<td>34</td>
<td>0.0</td>
</tr>
<tr>
<td>35</td>
<td>0.0</td>
</tr>
<tr>
<td>36</td>
<td>0.0</td>
</tr>
<tr>
<td>37</td>
<td>0.0</td>
</tr>
<tr>
<td>38</td>
<td>0.0</td>
</tr>
<tr>
<td>39</td>
<td>0.0</td>
</tr>
<tr>
<td>40</td>
<td>0.0</td>
</tr>
<tr>
<td>41</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>0.0</td>
</tr>
<tr>
<td>43</td>
<td>0.0</td>
</tr>
<tr>
<td>44</td>
<td>0.0</td>
</tr>
<tr>
<td>45</td>
<td>0.0</td>
</tr>
<tr>
<td>46</td>
<td>0.0</td>
</tr>
<tr>
<td>47</td>
<td>0.0</td>
</tr>
<tr>
<td>48</td>
<td>0.0</td>
</tr>
<tr>
<td>49</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>0.0</td>
</tr>
<tr>
<td>51</td>
<td>0.0</td>
</tr>
<tr>
<td>52</td>
<td>0.0</td>
</tr>
<tr>
<td>53</td>
<td>0.0</td>
</tr>
<tr>
<td>54</td>
<td>0.0</td>
</tr>
<tr>
<td>55</td>
<td>0.0</td>
</tr>
<tr>
<td>56</td>
<td>0.0</td>
</tr>
<tr>
<td>57</td>
<td>0.0</td>
</tr>
<tr>
<td>58</td>
<td>0.0</td>
</tr>
<tr>
<td>59</td>
<td>0.0</td>
</tr>
<tr>
<td>60</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Quadro 1 - Deformações nos elementos do modelo ensaiado, registadas pelos extensómetros eléctricos - 1ª etapa da experimentação. 
Continua
### Quadro 1 - Deformações nos elementos do modelo ensaiado, registadas pelos extensômetros elétricos - 1a etapa da experimentação.

<table>
<thead>
<tr>
<th>CARGA</th>
<th>M</th>
<th>E-1</th>
<th>E-2</th>
<th>E-3</th>
<th>E-4</th>
<th>E-5</th>
<th>E-6</th>
<th>E-7</th>
<th>E-8</th>
<th>E-9</th>
<th>E-10</th>
<th>E-11</th>
<th>E-12</th>
<th>E-13</th>
<th>E-14</th>
<th>E-15</th>
<th>E-16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41</td>
<td>190</td>
<td>427</td>
<td>395</td>
<td>412</td>
<td>410</td>
<td>408</td>
<td>406</td>
<td>404</td>
<td>402</td>
<td>399</td>
<td>396</td>
<td>393</td>
<td>390</td>
<td>387</td>
<td>384</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>390</td>
<td>315</td>
<td>418</td>
<td>456</td>
<td>475</td>
<td>474</td>
<td>473</td>
<td>472</td>
<td>471</td>
<td>470</td>
<td>469</td>
<td>468</td>
<td>467</td>
<td>466</td>
<td>465</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>590</td>
<td>570</td>
<td>580</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>790</td>
<td>620</td>
<td>540</td>
<td>480</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>990</td>
<td>740</td>
<td>540</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>1190</td>
<td>790</td>
<td>540</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>1390</td>
<td>790</td>
<td>540</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>1590</td>
<td>790</td>
<td>540</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>1790</td>
<td>790</td>
<td>540</td>
<td>440</td>
</tr>
</tbody>
</table>

Continua
Continuação

<table>
<thead>
<tr>
<th>N CARGA</th>
<th>E-1</th>
<th>E-2</th>
<th>E-3</th>
<th>E-4</th>
<th>E-5</th>
<th>E-6</th>
<th>E-7</th>
<th>E-8</th>
<th>E-9</th>
<th>E-10</th>
<th>E-11</th>
<th>E-12</th>
<th>E-13</th>
<th>E-14</th>
<th>E-15</th>
<th>E-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>19.0</td>
<td>-375</td>
<td>-594</td>
<td>591</td>
<td>995</td>
<td>-325</td>
<td>-425</td>
<td>545</td>
<td>775</td>
<td>55</td>
<td>235</td>
<td>40</td>
<td>128</td>
<td>-425</td>
<td>-560</td>
<td>545</td>
</tr>
<tr>
<td>122</td>
<td>39.0</td>
<td>-410</td>
<td>-545</td>
<td>755</td>
<td>975</td>
<td>-360</td>
<td>-495</td>
<td>665</td>
<td>870</td>
<td>95</td>
<td>244</td>
<td>85</td>
<td>115</td>
<td>-415</td>
<td>-555</td>
<td>565</td>
</tr>
<tr>
<td>123</td>
<td>59.0</td>
<td>-675</td>
<td>-615</td>
<td>840</td>
<td>1170</td>
<td>-435</td>
<td>-595</td>
<td>880</td>
<td>994</td>
<td>125</td>
<td>264</td>
<td>123</td>
<td>115</td>
<td>-420</td>
<td>-585</td>
<td>640</td>
</tr>
<tr>
<td>124</td>
<td>79.0</td>
<td>-530</td>
<td>-790</td>
<td>910</td>
<td>1160</td>
<td>-495</td>
<td>-540</td>
<td>910</td>
<td>1095</td>
<td>151</td>
<td>274</td>
<td>155</td>
<td>115</td>
<td>-445</td>
<td>-595</td>
<td>749</td>
</tr>
<tr>
<td>125</td>
<td>99.0</td>
<td>-583</td>
<td>-728</td>
<td>980</td>
<td>1248</td>
<td>-555</td>
<td>-690</td>
<td>1015</td>
<td>1195</td>
<td>175</td>
<td>285</td>
<td>195</td>
<td>120</td>
<td>-460</td>
<td>-635</td>
<td>795</td>
</tr>
<tr>
<td>126</td>
<td>119.0</td>
<td>-826</td>
<td>-765</td>
<td>1045</td>
<td>1320</td>
<td>-600</td>
<td>-649</td>
<td>1135</td>
<td>1300</td>
<td>215</td>
<td>310</td>
<td>249</td>
<td>123</td>
<td>-495</td>
<td>-685</td>
<td>825</td>
</tr>
<tr>
<td>127</td>
<td>139.0</td>
<td>-636</td>
<td>-885</td>
<td>1105</td>
<td>1385</td>
<td>-645</td>
<td>-675</td>
<td>1230</td>
<td>1385</td>
<td>225</td>
<td>315</td>
<td>275</td>
<td>130</td>
<td>-520</td>
<td>-730</td>
<td>895</td>
</tr>
<tr>
<td>128</td>
<td>159.0</td>
<td>-670</td>
<td>-803</td>
<td>1175</td>
<td>1470</td>
<td>-685</td>
<td>-675</td>
<td>1225</td>
<td>1470</td>
<td>245</td>
<td>325</td>
<td>305</td>
<td>130</td>
<td>-545</td>
<td>-770</td>
<td>955</td>
</tr>
<tr>
<td>129</td>
<td>179.0</td>
<td>-725</td>
<td>-806</td>
<td>1245</td>
<td>1524</td>
<td>-725</td>
<td>-725</td>
<td>1440</td>
<td>1555</td>
<td>315</td>
<td>355</td>
<td>375</td>
<td>125</td>
<td>-590</td>
<td>-835</td>
<td>1015</td>
</tr>
<tr>
<td>130</td>
<td>199.0</td>
<td>-780</td>
<td>-935</td>
<td>1395</td>
<td>1598</td>
<td>-780</td>
<td>-780</td>
<td>1495</td>
<td>1630</td>
<td>330</td>
<td>341</td>
<td>415</td>
<td>125</td>
<td>-595</td>
<td>-865</td>
<td>1095</td>
</tr>
<tr>
<td>131</td>
<td>219.0</td>
<td>-840</td>
<td>-982</td>
<td>1360</td>
<td>1665</td>
<td>-791</td>
<td>-775</td>
<td>1565</td>
<td>1715</td>
<td>265</td>
<td>355</td>
<td>455</td>
<td>130</td>
<td>-610</td>
<td>-790</td>
<td>1185</td>
</tr>
<tr>
<td>132</td>
<td>239.0</td>
<td>-900</td>
<td>-940</td>
<td>1462</td>
<td>1732</td>
<td>-865</td>
<td>-795</td>
<td>1646</td>
<td>1790</td>
<td>370</td>
<td>375</td>
<td>485</td>
<td>135</td>
<td>-640</td>
<td>-815</td>
<td>1265</td>
</tr>
<tr>
<td>133</td>
<td>0.0</td>
</tr>
<tr>
<td>134</td>
<td>0.0</td>
</tr>
<tr>
<td>135</td>
<td>0.0</td>
</tr>
<tr>
<td>136</td>
<td>0.0</td>
</tr>
<tr>
<td>137</td>
<td>0.0</td>
</tr>
<tr>
<td>138</td>
<td>0.0</td>
</tr>
<tr>
<td>139</td>
<td>0.0</td>
</tr>
<tr>
<td>140</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Quadro 1 - Deformações nos elementos do modelo ensaiado, registradas pelos extensômetros elétricos - 1ª etapa da experimentação.
<table>
<thead>
<tr>
<th>N CARGA</th>
<th>E-1</th>
<th>E-2</th>
<th>E-3</th>
<th>E-4</th>
<th>E-5</th>
<th>E-6</th>
<th>E-7</th>
<th>E-8</th>
<th>E-9</th>
<th>E-10</th>
<th>E-11</th>
<th>E-12</th>
<th>E-13</th>
<th>E-14</th>
<th>E-15</th>
<th>E-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

Quadro 2 - Deformações nos elementos do modelo ensaiado, registradas pelos extensômetros elétricos - 28 etapa da experimentação.
<table>
<thead>
<tr>
<th>CARGA</th>
<th>11H</th>
<th>11V</th>
<th>12H</th>
<th>12V</th>
<th>13H</th>
<th>13V</th>
<th>14H</th>
<th>14V</th>
<th>15H</th>
<th>15V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>14.5</td>
<td>0.507</td>
<td>0.814</td>
<td>0.684</td>
<td>1.119</td>
<td>0.346</td>
<td>0.579</td>
<td>0.017</td>
<td>0.068</td>
<td>-0.126</td>
</tr>
<tr>
<td>3</td>
<td>19.0</td>
<td>0.664</td>
<td>1.225</td>
<td>1.158</td>
<td>1.230</td>
<td>0.541</td>
<td>0.720</td>
<td>-0.051</td>
<td>1.107</td>
<td>-0.235</td>
</tr>
<tr>
<td>4</td>
<td>39.0</td>
<td>1.364</td>
<td>1.890</td>
<td>1.155</td>
<td>1.955</td>
<td>0.878</td>
<td>1.680</td>
<td>-0.354</td>
<td>1.361</td>
<td>-0.442</td>
</tr>
<tr>
<td>5</td>
<td>59.0</td>
<td>2.274</td>
<td>3.089</td>
<td>1.754</td>
<td>3.045</td>
<td>1.266</td>
<td>1.620</td>
<td>-0.453</td>
<td>1.892</td>
<td>-0.471</td>
</tr>
<tr>
<td>6</td>
<td>79.0</td>
<td>3.064</td>
<td>3.924</td>
<td>2.353</td>
<td>4.124</td>
<td>1.599</td>
<td>2.133</td>
<td>-0.476</td>
<td>2.351</td>
<td>-0.614</td>
</tr>
<tr>
<td>7</td>
<td>99.0</td>
<td>3.637</td>
<td>4.779</td>
<td>2.928</td>
<td>5.148</td>
<td>1.877</td>
<td>2.625</td>
<td>-0.478</td>
<td>2.911</td>
<td>-0.720</td>
</tr>
<tr>
<td>8</td>
<td>119.0</td>
<td>4.386</td>
<td>5.595</td>
<td>3.518</td>
<td>6.157</td>
<td>2.349</td>
<td>3.116</td>
<td>-0.669</td>
<td>3.770</td>
<td>-0.723</td>
</tr>
<tr>
<td>9</td>
<td>139.0</td>
<td>5.128</td>
<td>6.426</td>
<td>4.095</td>
<td>7.236</td>
<td>2.892</td>
<td>3.752</td>
<td>-0.643</td>
<td>4.491</td>
<td>-0.896</td>
</tr>
</tbody>
</table>

Quadro 3 - Deslocamentos dos elementos do modelo ensaiado, registradas pelos transdutores de deslocamento - 1a etapa da experimentação.

Continua
<table>
<thead>
<tr>
<th>H</th>
<th>CARGA</th>
<th>IIH</th>
<th>IIV</th>
<th>I2H</th>
<th>I2V</th>
<th>I3H</th>
<th>I3V</th>
<th>I4H</th>
<th>I4V</th>
<th>I5H</th>
<th>I5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>19.0</td>
<td>3.892</td>
<td>3.814</td>
<td>2.923</td>
<td>4.376</td>
<td>2.063</td>
<td>2.718</td>
<td>-0.312</td>
<td>3.882</td>
<td>-0.652</td>
<td>1.968</td>
</tr>
<tr>
<td>46</td>
<td>39.0</td>
<td>3.581</td>
<td>4.570</td>
<td>3.034</td>
<td>5.113</td>
<td>2.262</td>
<td>3.147</td>
<td>-0.275</td>
<td>3.544</td>
<td>-0.794</td>
<td>2.345</td>
</tr>
<tr>
<td>47</td>
<td>59.0</td>
<td>3.827</td>
<td>4.968</td>
<td>3.272</td>
<td>5.545</td>
<td>2.422</td>
<td>3.362</td>
<td>-0.309</td>
<td>3.772</td>
<td>-0.896</td>
<td>2.563</td>
</tr>
<tr>
<td>48</td>
<td>79.0</td>
<td>4.166</td>
<td>5.500</td>
<td>3.661</td>
<td>6.128</td>
<td>2.610</td>
<td>3.639</td>
<td>-0.377</td>
<td>4.105</td>
<td>-0.981</td>
<td>2.630</td>
</tr>
<tr>
<td>49</td>
<td>99.0</td>
<td>4.695</td>
<td>5.976</td>
<td>3.857</td>
<td>6.789</td>
<td>2.777</td>
<td>3.902</td>
<td>-0.421</td>
<td>4.463</td>
<td>-1.069</td>
<td>2.795</td>
</tr>
<tr>
<td>50</td>
<td>119.0</td>
<td>5.145</td>
<td>6.415</td>
<td>4.174</td>
<td>7.274</td>
<td>3.027</td>
<td>4.156</td>
<td>-0.485</td>
<td>4.796</td>
<td>-1.142</td>
<td>2.835</td>
</tr>
<tr>
<td>51</td>
<td>139.0</td>
<td>5.522</td>
<td>6.842</td>
<td>4.469</td>
<td>7.664</td>
<td>3.346</td>
<td>4.397</td>
<td>-0.493</td>
<td>5.164</td>
<td>-1.233</td>
<td>2.872</td>
</tr>
</tbody>
</table>

Quadro 3 - Deslocamentos dos elementos do modelo ensaiado, registradas pelos transdutores de deslocamento - 1ª etapa da experimentação.
### Quadro 3 - Deslocamentos dos elementos do modelo ensaiado, registrados pelos transdutores de deslocamento - 10 etapa da experimentação.

Continua
<table>
<thead>
<tr>
<th>N CARGA</th>
<th>1H</th>
<th>1I</th>
<th>1V</th>
<th>1Z</th>
<th>2H</th>
<th>2I</th>
<th>2V</th>
<th>3H</th>
<th>3I</th>
<th>3V</th>
<th>4H</th>
<th>4I</th>
<th>4V</th>
<th>5H</th>
<th>5I</th>
<th>5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>5.324</td>
<td>6.154</td>
<td>6.884</td>
<td>6.876</td>
<td>3.659</td>
<td>4.616</td>
<td>0.676</td>
<td>5.225</td>
<td>-8.953</td>
<td>2.556</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>5.524</td>
<td>6.776</td>
<td>4.685</td>
<td>7.471</td>
<td>3.755</td>
<td>4.938</td>
<td>0.639</td>
<td>5.608</td>
<td>-1.082</td>
<td>2.925</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>5.876</td>
<td>7.434</td>
<td>4.883</td>
<td>8.111</td>
<td>3.901</td>
<td>5.246</td>
<td>0.647</td>
<td>5.997</td>
<td>-1.885</td>
<td>3.259</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>6.388</td>
<td>8.085</td>
<td>5.368</td>
<td>8.788</td>
<td>4.045</td>
<td>5.539</td>
<td>0.714</td>
<td>6.362</td>
<td>-1.124</td>
<td>3.530</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>6.895</td>
<td>8.555</td>
<td>5.639</td>
<td>9.466</td>
<td>4.279</td>
<td>5.857</td>
<td>0.730</td>
<td>6.800</td>
<td>-1.198</td>
<td>3.859</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>7.348</td>
<td>8.997</td>
<td>5.986</td>
<td>10.044</td>
<td>4.591</td>
<td>6.107</td>
<td>0.736</td>
<td>7.183</td>
<td>-1.262</td>
<td>4.082</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>9.114</td>
<td>10.651</td>
<td>6.818</td>
<td>12.190</td>
<td>5.667</td>
<td>7.084</td>
<td>0.679</td>
<td>8.611</td>
<td>-1.552</td>
<td>4.973</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quadro 3 - Deslocamentos dos elementos do modelo ensaiado, registrados pelos transdutores de deslocamento - 1ª etapa da experimentação.
<table>
<thead>
<tr>
<th>N</th>
<th>CARGA</th>
<th>KIH</th>
<th>I1V</th>
<th>I2H</th>
<th>I2V</th>
<th>I3H</th>
<th>I3V</th>
<th>I4H</th>
<th>I4V</th>
<th>I5H</th>
<th>I5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>14.5</td>
<td>0.66</td>
<td>3.99</td>
<td>0.26</td>
<td>1.05</td>
<td>0.37</td>
<td>0.67</td>
<td>-0.05</td>
<td>0.67</td>
<td>-0.05</td>
<td>0.74</td>
</tr>
<tr>
<td>3</td>
<td>19.0</td>
<td>0.81</td>
<td>1.10</td>
<td>0.31</td>
<td>0.73</td>
<td>0.42</td>
<td>0.94</td>
<td>-0.12</td>
<td>0.63</td>
<td>-0.12</td>
<td>1.96</td>
</tr>
<tr>
<td>4</td>
<td>39.0</td>
<td>1.01</td>
<td>1.92</td>
<td>0.63</td>
<td>2.04</td>
<td>0.52</td>
<td>1.31</td>
<td>0.87</td>
<td>1.23</td>
<td>0.87</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>59.0</td>
<td>1.62</td>
<td>2.63</td>
<td>0.94</td>
<td>2.61</td>
<td>0.93</td>
<td>1.73</td>
<td>0.94</td>
<td>1.65</td>
<td>0.94</td>
<td>1.83</td>
</tr>
<tr>
<td>6</td>
<td>79.0</td>
<td>2.49</td>
<td>3.36</td>
<td>1.42</td>
<td>3.57</td>
<td>1.51</td>
<td>2.95</td>
<td>0.89</td>
<td>2.05</td>
<td>0.89</td>
<td>2.19</td>
</tr>
<tr>
<td>7</td>
<td>99.0</td>
<td>3.34</td>
<td>4.05</td>
<td>1.75</td>
<td>4.32</td>
<td>1.72</td>
<td>3.43</td>
<td>0.15</td>
<td>2.41</td>
<td>0.15</td>
<td>2.53</td>
</tr>
<tr>
<td>8</td>
<td>119.0</td>
<td>3.72</td>
<td>4.58</td>
<td>1.82</td>
<td>5.01</td>
<td>2.19</td>
<td>2.73</td>
<td>0.15</td>
<td>2.77</td>
<td>0.15</td>
<td>2.81</td>
</tr>
<tr>
<td>9</td>
<td>139.0</td>
<td>4.30</td>
<td>5.14</td>
<td>2.05</td>
<td>5.70</td>
<td>2.48</td>
<td>3.45</td>
<td>0.11</td>
<td>3.89</td>
<td>0.11</td>
<td>3.97</td>
</tr>
<tr>
<td>10</td>
<td>159.0</td>
<td>4.89</td>
<td>5.65</td>
<td>2.39</td>
<td>6.35</td>
<td>2.65</td>
<td>3.75</td>
<td>0.12</td>
<td>3.43</td>
<td>0.12</td>
<td>3.53</td>
</tr>
<tr>
<td>11</td>
<td>179.0</td>
<td>5.52</td>
<td>6.29</td>
<td>2.71</td>
<td>7.05</td>
<td>3.19</td>
<td>3.69</td>
<td>0.16</td>
<td>3.72</td>
<td>0.16</td>
<td>3.80</td>
</tr>
<tr>
<td>12</td>
<td>199.0</td>
<td>6.19</td>
<td>6.79</td>
<td>3.08</td>
<td>7.66</td>
<td>3.47</td>
<td>3.96</td>
<td>0.26</td>
<td>3.98</td>
<td>0.26</td>
<td>4.07</td>
</tr>
<tr>
<td>13</td>
<td>219.0</td>
<td>6.58</td>
<td>7.16</td>
<td>3.33</td>
<td>8.27</td>
<td>3.66</td>
<td>4.26</td>
<td>0.32</td>
<td>4.46</td>
<td>0.32</td>
<td>4.59</td>
</tr>
<tr>
<td>14</td>
<td>239.0</td>
<td>7.04</td>
<td>7.75</td>
<td>3.58</td>
<td>8.96</td>
<td>3.96</td>
<td>4.66</td>
<td>0.45</td>
<td>4.57</td>
<td>0.45</td>
<td>4.53</td>
</tr>
<tr>
<td>15</td>
<td>259.0</td>
<td>7.53</td>
<td>8.52</td>
<td>4.05</td>
<td>9.87</td>
<td>4.34</td>
<td>5.29</td>
<td>0.79</td>
<td>4.91</td>
<td>0.79</td>
<td>4.66</td>
</tr>
<tr>
<td>16</td>
<td>279.0</td>
<td>8.04</td>
<td>9.34</td>
<td>4.53</td>
<td>10.94</td>
<td>4.99</td>
<td>6.10</td>
<td>1.26</td>
<td>5.17</td>
<td>1.26</td>
<td>5.01</td>
</tr>
<tr>
<td>17</td>
<td>299.0</td>
<td>9.10</td>
<td>9.95</td>
<td>5.39</td>
<td>11.71</td>
<td>5.68</td>
<td>7.13</td>
<td>1.65</td>
<td>5.92</td>
<td>1.65</td>
<td>5.30</td>
</tr>
<tr>
<td>18</td>
<td>319.0</td>
<td>10.92</td>
<td>14.24</td>
<td>6.06</td>
<td>12.94</td>
<td>6.61</td>
<td>7.58</td>
<td>2.03</td>
<td>6.58</td>
<td>2.03</td>
<td>6.04</td>
</tr>
<tr>
<td>19</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>22</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>23</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>24</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>25</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>26</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>27</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>28</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>29</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>30</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>31</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>32</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>33</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>34</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>35</td>
<td>0.0</td>
<td>0.00</td>
</tr>
<tr>
<td>36</td>
<td>0.0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Quadro 4 - Deslocamentos dos elementos do modelo ensaiado, registradas pelos transdutores de deslocamento - 2a etapa da experimentação.

Continua
| H  | CARGA | I1H | I1V | I2H | I2V | I3H | I3V | I4H | I4V | I5H | I5V |
|----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 45 | 19.0  | 5.463 | 5.151 | 3.844 | 5.981 | 3.507 | 3.591 | 2.299 | 3.479 | -0.886 | 1.699 |
| 46 | 39.0  | 5.698 | 5.772 | 3.997 | 6.451 | 3.668 | 4.043 | 2.359 | 3.744 | -0.043 | 2.302 |
| 47 | 59.0  | 6.216 | 6.370 | 4.019 | 7.070 | 3.983 | 4.376 | 2.298 | 4.628 | -0.165 | 2.671 |
| 48 | 79.0  | 6.759 | 6.960 | 4.324 | 7.731 | 4.375 | 4.752 | 2.394 | 4.331 | -0.268 | 3.038 |
| 49 | 99.0  | 7.280 | 7.436 | 4.587 | 8.326 | 4.729 | 5.068 | 2.315 | 4.608 | -0.365 | 3.359 |
| 50 | 119.0 | 7.826 | 7.976 | 4.793 | 8.918 | 5.125 | 5.386 | 2.279 | 4.063 | -0.396 | 3.630 |
| 51 | 139.0 | 8.385 | 8.269 | 5.041 | 9.440 | 5.456 | 5.672 | 2.286 | 5.694 | -0.430 | 3.892 |
| 52 | 159.0 | 8.758 | 8.651 | 5.331 | 9.944 | 5.755 | 5.943 | 2.327 | 5.321 | -0.469 | 4.141 |
| 53 | 179.0 | 9.173 | 9.032 | 5.536 | 10.451 | 6.021 | 6.234 | 2.414 | 5.536 | -0.466 | 4.382 |
| 54 | 199.0 | 9.627 | 9.393 | 5.763 | 10.919 | 6.283 | 6.524 | 2.511 | 5.726 | -0.463 | 4.600 |
| 56 | 239.0 | 10.449 | 10.125 | 6.166 | 11.902 | 6.792 | 7.107 | 2.677 | 6.085 | -0.456 | 5.050 |
| 58 | 279.0 | 11.244 | 10.779 | 6.468 | 12.879 | 7.360 | 7.698 | 2.775 | 6.385 | -0.467 | 5.499 |
| 59 | 299.0 | 11.776 | 11.157 | 6.589 | 13.397 | 7.620 | 8.019 | 2.862 | 6.521 | -0.071 | 5.694 |
| 60 | 319.0 | 12.271 | 11.499 | 7.168 | 13.929 | 7.959 | 8.360 | 2.932 | 6.657 | -0.094 | 5.923 |
| 61 | 19.0  | 6.032 | 5.463 | 4.198 | 6.339 | 4.266 | 3.825 | 2.397 | 6.039 | 0.145 | 1.981 |
| 62 | 14.5  | 5.263 | 5.286 | 3.866 | 5.944 | 3.804 | 3.667 | 2.399 | 5.759 | -0.347 | 1.769 |
| 63 | 0.0   | 2.666 | 2.660 | 1.714 | 2.746 | 2.583 | 1.956 | 1.310 | 3.769 | 0.619 | 0.820 |
| 64 | 0.0   | 6.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 65 | 0.0   | 6.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 66 | 0.0   | 6.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

Quadro 4 - Deslocamentos do elementos do modelo ensaiado, registadas pelos transdutores de deslocamento - 2ª etapa da experimentação.
<table>
<thead>
<tr>
<th>Número</th>
<th>Carga</th>
<th>Pilar 4</th>
<th>Boca de saída do silo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RE</td>
<td>X 0.61 mm</td>
</tr>
<tr>
<td>1</td>
<td>8.60</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>14.50</td>
<td>-0.17</td>
<td>32.50</td>
</tr>
<tr>
<td>3</td>
<td>19.00</td>
<td>-0.11</td>
<td>43.25</td>
</tr>
<tr>
<td>4</td>
<td>39.00</td>
<td>-0.08</td>
<td>74.75</td>
</tr>
<tr>
<td>5</td>
<td>59.00</td>
<td>-0.33</td>
<td>118.75</td>
</tr>
<tr>
<td>6</td>
<td>79.00</td>
<td>-0.67</td>
<td>156.50</td>
</tr>
<tr>
<td>7</td>
<td>99.00</td>
<td>-1.00</td>
<td>198.00</td>
</tr>
<tr>
<td>8</td>
<td>119.00</td>
<td>-1.37</td>
<td>232.00</td>
</tr>
<tr>
<td>9</td>
<td>139.00</td>
<td>-1.43</td>
<td>285.00</td>
</tr>
<tr>
<td>10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>13</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>14</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>17</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>18</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>19</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>19.00</td>
<td>0.18</td>
<td>42.75</td>
</tr>
<tr>
<td>22</td>
<td>35.00</td>
<td>0.28</td>
<td>75.50</td>
</tr>
<tr>
<td>23</td>
<td>59.00</td>
<td>-1.47</td>
<td>118.00</td>
</tr>
<tr>
<td>24</td>
<td>79.00</td>
<td>-1.29</td>
<td>135.37</td>
</tr>
<tr>
<td>25</td>
<td>99.00</td>
<td>-1.11</td>
<td>153.25</td>
</tr>
<tr>
<td>26</td>
<td>119.00</td>
<td>-0.61</td>
<td>173.00</td>
</tr>
<tr>
<td>27</td>
<td>139.00</td>
<td>-0.76</td>
<td>149.00</td>
</tr>
<tr>
<td>28</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>29</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>30</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>31</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>32</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>34</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>35</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>36</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>37</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>38</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>39</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>40</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>41</td>
<td>19.00</td>
<td>-1.90</td>
<td>42.75</td>
</tr>
<tr>
<td>42</td>
<td>39.00</td>
<td>-1.64</td>
<td>101.25</td>
</tr>
<tr>
<td>43</td>
<td>59.00</td>
<td>-1.46</td>
<td>119.25</td>
</tr>
<tr>
<td>44</td>
<td>79.00</td>
<td>-1.28</td>
<td>140.50</td>
</tr>
<tr>
<td>45</td>
<td>99.00</td>
<td>-1.12</td>
<td>168.75</td>
</tr>
<tr>
<td>46</td>
<td>119.00</td>
<td>-0.93</td>
<td>179.50</td>
</tr>
<tr>
<td>47</td>
<td>139.00</td>
<td>-0.76</td>
<td>211.00</td>
</tr>
</tbody>
</table>

Quadro 5 - Valores correspondentes as leituras da célula de carga e do relógio comparador, instalados no pilar 4 e na boca de saída do modelo, respectivamente-1ª etapa da experimentação.

Continua
Continuação

<table>
<thead>
<tr>
<th>Número</th>
<th>Carga</th>
<th>Pilar 4</th>
<th>Relógio Comparador</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KN</td>
<td>X 0.01 mm</td>
</tr>
<tr>
<td>48</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>49</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>51</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>52</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>53</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>55</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>56</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>57</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>58</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>59</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>60</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>61</td>
<td>17.00</td>
<td>-1.96</td>
<td>63.00</td>
</tr>
<tr>
<td>62</td>
<td>39.00</td>
<td>-1.79</td>
<td>95.25</td>
</tr>
<tr>
<td>63</td>
<td>59.00</td>
<td>-1.52</td>
<td>120.70</td>
</tr>
<tr>
<td>64</td>
<td>79.00</td>
<td>-1.35</td>
<td>143.75</td>
</tr>
<tr>
<td>65</td>
<td>99.00</td>
<td>-1.16</td>
<td>162.25</td>
</tr>
<tr>
<td>66</td>
<td>119.00</td>
<td>-1.05</td>
<td>182.50</td>
</tr>
<tr>
<td>67</td>
<td>139.00</td>
<td>-0.88</td>
<td>204.50</td>
</tr>
<tr>
<td>68</td>
<td>159.00</td>
<td>-0.79</td>
<td>234.25</td>
</tr>
<tr>
<td>69</td>
<td>179.00</td>
<td>-0.93</td>
<td>273.25</td>
</tr>
<tr>
<td>70</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>71</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>72</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>73</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>74</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>75</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>76</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>77</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>78</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>79</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>80</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>81</td>
<td>19.00</td>
<td>-2.37</td>
<td>141.25</td>
</tr>
<tr>
<td>82</td>
<td>39.00</td>
<td>-1.94</td>
<td>131.40</td>
</tr>
<tr>
<td>83</td>
<td>59.00</td>
<td>-1.64</td>
<td>153.25</td>
</tr>
<tr>
<td>84</td>
<td>79.00</td>
<td>-1.66</td>
<td>175.25</td>
</tr>
<tr>
<td>85</td>
<td>99.00</td>
<td>-1.41</td>
<td>195.00</td>
</tr>
<tr>
<td>86</td>
<td>119.00</td>
<td>-1.44</td>
<td>215.45</td>
</tr>
<tr>
<td>87</td>
<td>139.00</td>
<td>-1.35</td>
<td>235.00</td>
</tr>
<tr>
<td>88</td>
<td>159.00</td>
<td>-1.20</td>
<td>255.25</td>
</tr>
<tr>
<td>89</td>
<td>179.00</td>
<td>-1.04</td>
<td>285.00</td>
</tr>
<tr>
<td>90</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>91</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>92</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>93</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Quadro 5 - Valores correspondentes às leituras da célula de carga e do relógio comparador, instalados no pilar 4 e na boca de saída do silo, respectivamente-1ª etapa da experimentação.

Continua
<table>
<thead>
<tr>
<th>Número</th>
<th>Carga</th>
<th>Pilar 4</th>
<th>Relógio Comparador</th>
<th>Boca de saída do silo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KH</td>
<td></td>
<td>X 0.01 mm</td>
</tr>
<tr>
<td>94</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>95</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>96</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>97</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>98</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>99</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>100</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>101</td>
<td>19.00</td>
<td>-2.72</td>
<td>115.75</td>
<td>282.72</td>
</tr>
<tr>
<td>102</td>
<td>35.00</td>
<td>-2.49</td>
<td>146.25</td>
<td>256.75</td>
</tr>
<tr>
<td>103</td>
<td>59.00</td>
<td>-2.22</td>
<td>171.25</td>
<td>268.25</td>
</tr>
<tr>
<td>104</td>
<td>79.00</td>
<td>-1.95</td>
<td>192.25</td>
<td>324.90</td>
</tr>
<tr>
<td>105</td>
<td>99.00</td>
<td>-1.73</td>
<td>212.75</td>
<td>362.25</td>
</tr>
<tr>
<td>106</td>
<td>119.00</td>
<td>-1.57</td>
<td>232.72</td>
<td>403.50</td>
</tr>
<tr>
<td>107</td>
<td>139.00</td>
<td>-1.47</td>
<td>256.75</td>
<td>434.00</td>
</tr>
<tr>
<td>108</td>
<td>159.00</td>
<td>-1.22</td>
<td>268.25</td>
<td>462.50</td>
</tr>
<tr>
<td>109</td>
<td>179.00</td>
<td>-1.31</td>
<td>289.75</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>199.00</td>
<td>-1.49</td>
<td>324.90</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>219.00</td>
<td>-1.50</td>
<td>362.25</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>239.00</td>
<td>-1.46</td>
<td>403.50</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>19.00</td>
<td>-2.69</td>
<td>171.25</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>39.00</td>
<td>-2.51</td>
<td>242.90</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>59.00</td>
<td>-2.20</td>
<td>225.25</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>79.00</td>
<td>-1.98</td>
<td>250.80</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>99.00</td>
<td>-1.75</td>
<td>270.75</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>119.00</td>
<td>-1.63</td>
<td>270.00</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>139.00</td>
<td>-1.50</td>
<td>309.50</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>159.00</td>
<td>-1.25</td>
<td>326.00</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>179.00</td>
<td>-1.57</td>
<td>346.25</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>199.00</td>
<td>-1.28</td>
<td>366.75</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>219.00</td>
<td>-1.57</td>
<td>392.25</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>239.00</td>
<td>-1.57</td>
<td>421.50</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Quadro 5 - Valores correspondentes as leituras da célula de carga e do relógio comparador, instalados no pilar 4 e na boca de saída do modelo, respectivamente-1a etapa da experimentação.

Continua
<table>
<thead>
<tr>
<th>Número</th>
<th>Carga</th>
<th>Pilar 4</th>
<th>Relógio Comparador</th>
<th>Boca de saída do silo</th>
</tr>
</thead>
<tbody>
<tr>
<td>141</td>
<td>19.00</td>
<td>-2.69</td>
<td></td>
<td>187.75</td>
</tr>
<tr>
<td>142</td>
<td>39.00</td>
<td>-2.31</td>
<td></td>
<td>219.50</td>
</tr>
<tr>
<td>143</td>
<td>59.00</td>
<td>-2.81</td>
<td></td>
<td>244.50</td>
</tr>
<tr>
<td>144</td>
<td>79.00</td>
<td>-1.75</td>
<td></td>
<td>245.75</td>
</tr>
<tr>
<td>145</td>
<td>99.00</td>
<td>-1.55</td>
<td></td>
<td>286.00</td>
</tr>
<tr>
<td>146</td>
<td>119.00</td>
<td>-1.47</td>
<td></td>
<td>308.25</td>
</tr>
<tr>
<td>147</td>
<td>139.00</td>
<td>-1.44</td>
<td></td>
<td>326.50</td>
</tr>
<tr>
<td>148</td>
<td>159.00</td>
<td>-1.35</td>
<td></td>
<td>342.75</td>
</tr>
<tr>
<td>149</td>
<td>179.00</td>
<td>-1.26</td>
<td></td>
<td>362.75</td>
</tr>
<tr>
<td>150</td>
<td>199.00</td>
<td>-1.17</td>
<td></td>
<td>385.25</td>
</tr>
<tr>
<td>151</td>
<td>219.00</td>
<td>-1.57</td>
<td></td>
<td>410.50</td>
</tr>
<tr>
<td>152</td>
<td>239.00</td>
<td>-1.58</td>
<td></td>
<td>434.00</td>
</tr>
<tr>
<td>153</td>
<td>19.00</td>
<td>-2.72</td>
<td></td>
<td>246.50</td>
</tr>
<tr>
<td>154</td>
<td>0.00</td>
<td>-2.14</td>
<td></td>
<td>69.25</td>
</tr>
<tr>
<td>155</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>156</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>157</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>158</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>159</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>160</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

Quadro 5 - Valores correspondentes às leituras da célula de carga e do relógio comparador, instalados no pilar 4 e na boca de saída do modelo, respectivamente-1ª etapa da experimentação.
<table>
<thead>
<tr>
<th>Número</th>
<th>Carga</th>
<th>Pilare 4</th>
<th>Boca de saída do silo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KN</td>
<td>X 0.01 mm</td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>14.50</td>
<td>-0.55</td>
<td>16.75</td>
</tr>
<tr>
<td>3</td>
<td>19.00</td>
<td>-0.55</td>
<td>19.00</td>
</tr>
<tr>
<td>4</td>
<td>39.00</td>
<td>-0.73</td>
<td>43.25</td>
</tr>
<tr>
<td>5</td>
<td>59.00</td>
<td>-1.14</td>
<td>70.00</td>
</tr>
<tr>
<td>6</td>
<td>79.00</td>
<td>-1.55</td>
<td>88.50</td>
</tr>
<tr>
<td>7</td>
<td>99.00</td>
<td>-1.87</td>
<td>118.50</td>
</tr>
<tr>
<td>8</td>
<td>119.00</td>
<td>-2.07</td>
<td>128.50</td>
</tr>
<tr>
<td>9</td>
<td>139.00</td>
<td>-2.13</td>
<td>159.75</td>
</tr>
<tr>
<td>10</td>
<td>159.00</td>
<td>-2.34</td>
<td>172.00</td>
</tr>
<tr>
<td>11</td>
<td>179.00</td>
<td>-2.37</td>
<td>192.75</td>
</tr>
<tr>
<td>12</td>
<td>199.00</td>
<td>-2.20</td>
<td>215.75</td>
</tr>
<tr>
<td>13</td>
<td>219.00</td>
<td>-2.30</td>
<td>236.25</td>
</tr>
<tr>
<td>14</td>
<td>239.00</td>
<td>-2.50</td>
<td>261.25</td>
</tr>
<tr>
<td>15</td>
<td>259.00</td>
<td>-2.82</td>
<td>291.25</td>
</tr>
<tr>
<td>16</td>
<td>279.00</td>
<td>-2.52</td>
<td>321.25</td>
</tr>
<tr>
<td>17</td>
<td>299.00</td>
<td>-2.71</td>
<td>359.50</td>
</tr>
<tr>
<td>18</td>
<td>319.00</td>
<td>-3.01</td>
<td>398.75</td>
</tr>
<tr>
<td>19</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>21</td>
<td>19.00</td>
<td>-5.26</td>
<td>114.00</td>
</tr>
<tr>
<td>22</td>
<td>39.00</td>
<td>-4.97</td>
<td>142.00</td>
</tr>
<tr>
<td>23</td>
<td>59.00</td>
<td>-4.68</td>
<td>172.00</td>
</tr>
<tr>
<td>24</td>
<td>79.00</td>
<td>-4.47</td>
<td>187.75</td>
</tr>
<tr>
<td>25</td>
<td>99.00</td>
<td>-4.04</td>
<td>204.50</td>
</tr>
<tr>
<td>26</td>
<td>119.00</td>
<td>-3.74</td>
<td>227.25</td>
</tr>
<tr>
<td>27</td>
<td>139.00</td>
<td>-3.56</td>
<td>262.00</td>
</tr>
<tr>
<td>28</td>
<td>159.00</td>
<td>-3.31</td>
<td>292.25</td>
</tr>
<tr>
<td>29</td>
<td>179.00</td>
<td>-3.19</td>
<td>318.50</td>
</tr>
<tr>
<td>30</td>
<td>199.00</td>
<td>-3.37</td>
<td>342.25</td>
</tr>
<tr>
<td>31</td>
<td>219.00</td>
<td>-3.36</td>
<td>366.00</td>
</tr>
<tr>
<td>32</td>
<td>239.00</td>
<td>-3.34</td>
<td>393.25</td>
</tr>
<tr>
<td>33</td>
<td>259.00</td>
<td>-2.95</td>
<td>414.25</td>
</tr>
<tr>
<td>34</td>
<td>279.00</td>
<td>-2.98</td>
<td>437.00</td>
</tr>
<tr>
<td>35</td>
<td>299.00</td>
<td>-2.92</td>
<td>457.25</td>
</tr>
<tr>
<td>36</td>
<td>319.00</td>
<td>-2.74</td>
<td>486.55</td>
</tr>
<tr>
<td>37</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>38</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>39</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>40</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>41</td>
<td>19.00</td>
<td>-5.32</td>
<td>123.50</td>
</tr>
<tr>
<td>42</td>
<td>39.00</td>
<td>-5.00</td>
<td>152.75</td>
</tr>
<tr>
<td>43</td>
<td>59.00</td>
<td>-4.88</td>
<td>180.00</td>
</tr>
<tr>
<td>44</td>
<td>79.00</td>
<td>-4.38</td>
<td>205.75</td>
</tr>
<tr>
<td>45</td>
<td>99.00</td>
<td>-4.04</td>
<td>226.50</td>
</tr>
<tr>
<td>46</td>
<td>119.00</td>
<td>-3.74</td>
<td>246.75</td>
</tr>
<tr>
<td>47</td>
<td>139.00</td>
<td>-3.50</td>
<td>261.00</td>
</tr>
</tbody>
</table>

Quadro 6 - Valores correspondentes as leituras da célula de carga e do relógio comparador, instalados no pilar 4 e na boca de saída do modelo, respectivamente-2ª etapa da experimentação.

Continua
<table>
<thead>
<tr>
<th>Numero</th>
<th>Carga</th>
<th>Pilar 4</th>
<th>Relógio Comparador</th>
<th>Beca de saída do silo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KM</td>
<td></td>
<td>x 0.01 mm</td>
</tr>
<tr>
<td>48</td>
<td>159.00</td>
<td>-3.37</td>
<td></td>
<td>323.25</td>
</tr>
<tr>
<td>49</td>
<td>179.00</td>
<td>-3.22</td>
<td></td>
<td>348.50</td>
</tr>
<tr>
<td>50</td>
<td>199.00</td>
<td>-3.34</td>
<td></td>
<td>371.00</td>
</tr>
<tr>
<td>51</td>
<td>219.00</td>
<td>-3.28</td>
<td></td>
<td>391.00</td>
</tr>
<tr>
<td>52</td>
<td>239.00</td>
<td>-2.95</td>
<td></td>
<td>413.25</td>
</tr>
<tr>
<td>53</td>
<td>259.00</td>
<td>-2.98</td>
<td></td>
<td>436.00</td>
</tr>
<tr>
<td>54</td>
<td>279.00</td>
<td>-3.01</td>
<td></td>
<td>456.25</td>
</tr>
<tr>
<td>55</td>
<td>299.00</td>
<td>-2.68</td>
<td></td>
<td>478.00</td>
</tr>
<tr>
<td>56</td>
<td>319.00</td>
<td>-2.77</td>
<td></td>
<td>501.00</td>
</tr>
<tr>
<td>57</td>
<td>19.00</td>
<td>-5.37</td>
<td></td>
<td>132.75</td>
</tr>
<tr>
<td>58</td>
<td>14.50</td>
<td>-5.34</td>
<td></td>
<td>186.50</td>
</tr>
<tr>
<td>59</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
</tr>
<tr>
<td>60</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>

Quadro 6 - Valores correspondentes às leituras da célula de carga e do relógio comparador, instalados no pilar 4 e na boca de saída do modelo, respectivamente 29 etapa da experimentação.
<table>
<thead>
<tr>
<th>PÁGINA</th>
<th>POSIÇÃO</th>
<th>ONDE SE Lê</th>
<th>LEIA-SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2º parag.</td>
<td>paramêtros</td>
<td>paramêtros</td>
</tr>
<tr>
<td>7</td>
<td>4º parag.</td>
<td>IX</td>
<td>XIX</td>
</tr>
<tr>
<td>7</td>
<td>4º parag.</td>
<td>JANSSEN</td>
<td>JANSSEN</td>
</tr>
<tr>
<td>12</td>
<td>5º parag.</td>
<td>or-nadamente</td>
<td>ordenadamente</td>
</tr>
<tr>
<td>14</td>
<td>1ª linha</td>
<td>vertical</td>
<td>vertical</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>(P_v = \gamma(Z + h/3)) ...</td>
<td>(P_v = \gamma(Z + h_0/3)) ...</td>
</tr>
<tr>
<td>24</td>
<td>3º parag.</td>
<td>presões</td>
<td>pressões</td>
</tr>
<tr>
<td>31</td>
<td>2º parag.</td>
<td>portanto</td>
<td>porquanto</td>
</tr>
<tr>
<td>41</td>
<td>. Fig. 2.13a</td>
<td>in-na</td>
<td>interna</td>
</tr>
<tr>
<td>46</td>
<td>Fig. 2.18</td>
<td>(P_{no} = ... (1 + \text{sen}2\theta)/4\mu)</td>
<td>(P_{no} = ... (1 + \text{sen}2\theta)/4\mu)</td>
</tr>
<tr>
<td>109</td>
<td>2º parag.</td>
<td>... entre a direção das fibras de face...</td>
<td>... entre a direção das fibras do bloco, a direção das fibras de face</td>
</tr>
<tr>
<td>116</td>
<td>-</td>
<td>(F_{sld} = 0,75) KN</td>
<td>(F_{sld} = 0,72) KN</td>
</tr>
<tr>
<td>141</td>
<td>CORTE &quot;B&quot;</td>
<td>(\gamma_A)</td>
<td>(\gamma_A)</td>
</tr>
<tr>
<td>142</td>
<td>Fig. 6.23b</td>
<td>(n_{\text{pn}} = \gamma_A (\text{max}))</td>
<td>(n_{\text{pn}} \leq 2\gamma_A l_x/l_y)</td>
</tr>
<tr>
<td>142</td>
<td>Fig. 6.23</td>
<td>(n_{\text{pn}} = \gamma_A = \gamma_A/\text{tg}\theta (\text{max}))</td>
<td>(n_{\text{pn}} \leq 2\gamma_A l_x/l_y \text{tg}\theta)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(n_{\text{pn}} = \gamma_A (\text{max}))</td>
<td>(n_{\text{pn}} \leq 2\gamma_A l_x/l_y \text{tg}\theta)</td>
</tr>
<tr>
<td>144</td>
<td>(\beta)</td>
<td>(\beta_0 = \beta' + \beta = 80^\circ)</td>
<td>(\beta_0 + \beta' + \beta = 80^\circ)</td>
</tr>
<tr>
<td>146</td>
<td>Fig. 6.27</td>
<td>(\gamma_A = \gamma_A = Q_{gl})</td>
<td>(2\gamma_A l_x/l_y = Q_{gl})</td>
</tr>
<tr>
<td>147</td>
<td>Fig. 6.30</td>
<td>(\gamma_A)</td>
<td>(2\gamma_A l_x/l_y)</td>
</tr>
<tr>
<td>189</td>
<td>Fig. 6.57</td>
<td>5,65 KN/m</td>
<td>13,60 KN/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,77 KN/m</td>
<td>9,07 KN/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17,61 KN/m</td>
<td>25,56 KN/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11,74 KN/m</td>
<td>17,04 KN/m</td>
</tr>
<tr>
<td>PÁGINA</td>
<td>POSIÇÃO</td>
<td>ONDE SE Lê</td>
<td>Leia-se</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>190</td>
<td>Quadro 6.18</td>
<td>11,74</td>
<td>17,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17,61</td>
<td>25,56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,65</td>
<td>0,95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,98</td>
<td>1,42</td>
</tr>
<tr>
<td>191</td>
<td>Quadro 6.19</td>
<td>0,65</td>
<td>0,95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,71</td>
<td>0,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,98</td>
<td>1,42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,45</td>
<td>0,49</td>
</tr>
<tr>
<td>193</td>
<td>Quadro 6.22</td>
<td>17,61</td>
<td>25,56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13,34</td>
<td>19,36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,00</td>
<td>5,00</td>
</tr>
<tr>
<td>206</td>
<td>4° parag.</td>
<td>(Figura 6.25)</td>
<td>(Figura 6.35)</td>
</tr>
<tr>
<td>209</td>
<td>1° parag.</td>
<td>pesquenas</td>
<td>pequenas</td>
</tr>
<tr>
<td>223</td>
<td>CORTE JJ</td>
<td>1/4&quot; C/ 7 cm</td>
<td>1/4&quot; C/ 5 cm</td>
</tr>
<tr>
<td>233</td>
<td>3° parag.</td>
<td>de 7 para 14 cm</td>
<td>de 5 para 14 cm</td>
</tr>
<tr>
<td>237</td>
<td>Fig. 7.7.</td>
<td>figura mal posicionada</td>
<td>-</td>
</tr>
<tr>
<td>262</td>
<td>Quadro 8.5</td>
<td>5,96</td>
<td>10,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,67</td>
<td>12,93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,21</td>
<td>17,22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,33</td>
<td>0,56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,43</td>
<td>0,72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,57</td>
<td>0,96</td>
</tr>
<tr>
<td>272</td>
<td>4° parag.</td>
<td>... a partir dos deslocamentos ...</td>
<td>... a partir da média dos deslocamentos ...</td>
</tr>
</tbody>
</table>